Criteria of instability of copper and aluminium perfect crystals subjected to elastic deformation in the temperature range 0 – 400 K

A.V. Zinovev ORCID logo , A.M. Iskandarov ORCID logo , S.V. Dmitriev, A.I. Pshenichnyuk show affiliations and emails
Received 16 April 2019; Accepted 08 May 2019;
Citation: A.V. Zinovev, A.M. Iskandarov, S.V. Dmitriev, A.I. Pshenichnyuk. Criteria of instability of copper and aluminium perfect crystals subjected to elastic deformation in the temperature range 0 – 400 K. Lett. Mater., 2019, 9(3) 265-269
BibTex   https://doi.org/10.22226/2410-3535-2019-3-265-269

Abstract

Comparison of the macroscopic and microscopic creteria of lattice instability for defect-free fcc metal.Polycrystalline metals have flow stress two to three orders of magnitude lower than the theoretical shear strength estimated by Frenkel model. This significant strength difference is primarily due to the presence of defects, such as dislocations and grain boundaries. However, it was experimentally found that defect-free nanoscale objects (whiskers, nanopillars, etc.) can exhibit strength close to the theoretical limit. With the development of nanotechnology, interest in the study of the theoretical strength of metals and alloys has grown significantly. It is important to find reliable criteria of lattice instability when homogeneous nucleation of defects begins during deformation of an ideal crystal lattice. Note that the Frenkel estimation does not take into account thermal vibrations of atoms and attempts are being made to take into account the effect of temperature on the theoretical strength of defect-free crystals. In this paper, using molecular dynamics simulation, we study shear deformation in the direction of for single crystals of copper and aluminum in the temperature range from 0 to 400 K. Lattice instability was evaluated using two criteria: (i) macroscopic criterion, which is related to the loss of positive definiteness of the stiffness tensor, and (ii) a microscopic criterion related to the formation of a stacking fault, which leads to a drop of the applied shear stress. It was demonstrated that both criteria are consistent at low temperatures, but the macroscopic criterion is less reliable at higher temperatures.

References (30)

1. С. Herring, J. K. Galt. Phys. Rev. 85, 1060 (1952). Crossref
2. B. Wu, A. Heidelberg, J. J. Boland. Nat. Mater. 4, 525 (2005). Crossref
3. A. M. Minor, S. A. Syed Asif, Z. Shan, E. A. Stach, E. Cyrankowski, T. J. Wyrobek, O. L. Warren. Nat. Mater. 5, 697 (2006). Crossref
4. M. Jahnátek, J. Hafner, M. Krajčí. Phys. Rev. B. 79, 224103 (2009). Crossref
5. D. Kiener, C. Motz, G. Dehm. Mater. Sci. Eng. A. 505, 79 (2009). Crossref
6. D. Kiener, W. Grosinger, G. Dehm, R. Pippan. Acta Mater. 56, 580 (2008). Crossref
7. S. W. Lee, S. M. Han, W. D. Nix. Acta Mater. 57, 4404 (2009). Crossref
8. Z. W. Shan, R. K. Mishra, S. A. Syed Asif, O. L. Warren, A. M. Minor. Nat. Mater. 7, 115 (2008). Crossref
9. A. T. Jennings, M. J. Burek, J. R. Greer. Phys. Rev. Lett. 104, 135503 (2010). Crossref
10. G. Richter, K. Hillerich, D. S. Gianola, R. Monig, O. Kraft, C. A. Volkert. Nano Lett. 9, 3048 (2009). Crossref
11. H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert, G. M. Pharr. Scr. Mater. 57, 397 (2007). Crossref
12. M. B. Lowry, D. Kiener, M. M. LeBlanc, C. Chisholm, J. N. Florando, J. W. Morris Jr., A. M. Minor. Acta Mater. 58, 5160 (2010). Crossref
13. J. R. Morris, H. Bei, G. M. Pharr, E. P. George. Phys. Rev. Lett. 106, 165502 (2011). Crossref
14. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, S. Yip. Phys. Rev. B. 70, 104104 (2004). Crossref
15. T. Tsuru, Y. Kaji, D. Matsunaka, Y. Shibutani. Phys. Rev. B. 82, 024101 (2010). Crossref
16. R. Janisch, N. Ahmed, A. Hartmaier. Phys. Rev. B. 81, 184108 (2010). Crossref
17. T. Tsuru, Y. Shibutani. Phys. Rev. B. 75, 035415 (2007). Crossref
18. K. Kolluri, M. R. Gungor, D. Maroudas. Phys. Rev. B. 78, 195408 (2008). Crossref
19. K. Kolluri, M. R. Gungor, D. Maroudas. Appl. Phys. Lett. 94, 101911 (2009). Crossref
20. K. Kolluri, M. R. Gungor, D. Maroudas. J. Appl. Phys. 105, 093515 (2009). Crossref
21. Y. Umeno, M. Černý. Phys. Rev. B. 77, 100101 (R) (2008). Crossref
22. Y. Umeno, Y. Shiiihara, N. Yoshikawa. J. Phys.: Condens. Matter. 23, 385401 (2011). Crossref
23. M. Černý, J. Pokluda. Comp. Mater. Sci. 50, 2257 (2011). Crossref
24. A. M. Iskandarov, S. V. Dmitriev, Y. Umeno. Phys. Rev. B. 84, 224118 (2011). Crossref
25. K. Mizushima, S. Yip, E. Kaxiras. Phys. Rev. B. 50, 14952 (1994). Crossref
26. Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopoulos. Phys. Rev. B. 59, 3393 (1999). Crossref
27. R. R. Zope, Y. Mishin. Phys. Rev. B. 68, 024102 (2003). Crossref
28. R. D. Boyer, J. Li, S. Ogata, S. Yip. Modell. Simul. Mater. Sci. Eng. 12, 1017 (2004). Crossref
29. A. M. Iskandarov, S. V. Dmitriev, Y. Umeno. Journal of Solid Mechanicsand MaterialsEngineering. 6 (1), 29 (2012). Crossref
30. M. Parrinello, A. Rahman. J. Appl. Phys. 52, 7182 (1981). Crossref

Similar papers

Funding

1. Russian Foundation for Basic Research - grant No. 17‑02‑00984