Specific behavior of electrolytic copper powders of different morphological forms in temperature fields

T.A. Ovechkina, N.N. Gryzunova, A.A. Vikarchuk, A.M. Gryzunov, A.G. Denisova show affiliations and emails
Received 15 February 2017; Accepted 21 March 2017;
This paper is written in Russian
Citation: T.A. Ovechkina, N.N. Gryzunova, A.A. Vikarchuk, A.M. Gryzunov, A.G. Denisova. Specific behavior of electrolytic copper powders of different morphological forms in temperature fields. Lett. Mater., 2017, 7(2) 120-124
BibTex   https://doi.org/10.22226/2410-3535-2017-2-120-124

Abstract

Сopper powders with approximately the same average particle size, but with different internal structures and surface morphologies were obtained by electrolytic 
method in this work. SEM  image  of  surface  morphology  of  powder  particles  of  copper after heat treatment at T = 600°C: sample 1 (a), sample 2 (b) is shown on the figure.An important goal of materials science is the development of copper powders, which are used as catalysts in reactors based on fluidization bed technology. These reactors are more economical and efficient than the reactors with fixed catalytic layer. However, such reactors put special requirements to the catalysts. The catalyst should be stable in the temperature fields, have high thermal conductivity and wear resistance, certain shapes and sizes of the active particles. Сopper powders with approximately the same average particle size, but with different internal structures and surface morphologies were obtained by electrolytic method in this work. A comparative analysis of the results of exposure to temperature fields was also performed. The heating of powders was carried out in a differential scanning calorimeter (X-DSC 7000). Investigations of surface morphology and phase composition changes of the copper powders particles were performed using scanning electron microscopy and x-ray diffraction. It has been shown that particles with different initial structures and morphologies have similar morphological and phase transformations in the process of annealing in air (sintering and loss of particles faceting, the growth of whiskers and oxidation, the formation of cavities inside and pores on the surface). Nevertheless, for the icosahedral small particles of copper, there is an increased release of energy during the heating in DSC, and this energy activates and accelerates structural-phase transformations in the particles. By authors’ opinion, this can be related to particular features of the internal structure and morphology of their surface.

References (20)

1. J. Diduszycki. Principles of design of catalytic reactors. Chemistry. (1972) 376p. (in Russia) [Я. Дидушинский Основы проектирования каталитических реакторов. Химия. 1972. 376с.].
2. V. P. Dmitrienko, O. I. Nalesnik. Electrochemical method of producing copper powder. Study guide. Tomsk, NITPU (2013) 19p. (in Russia) [В. П. Дмитриенко, О. И. Налесник Электрохимический способ получения медного порошка. Учебное пособие. Томск, НИТПУ. 2013. 19с.].
3. M. S. Kapitsa, N. P. Ivanova. Applied electrochemistry. Study guide. Minsk, BSTU (2006) 56p. (in Russia) [М. С. Капица, Н. П. Иванова.Прикладная электрохимия. Учебное пособие. Минск, БГТУ. 2006. 56с.].
4. V. M. Maksimovic, Lj. J. Pavlovic, M. G. Pavlovic, M. V. Tomic. Characterization of copper powder particles obtained by electrodeposition as function of different current densities // Journal of Applied Electrochemistry 39 (12), (2009). p. 2545 - 2552. Crossref
5. H. Hashemipour, M. E. Zadeh, R. Pourakbari, P. Rahimi Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method // International Journal of the Physical Sciences.6, (2011).p. 4331 - 4336.
6. M. V. Tesakova, V. I. Parfenyuk. Surface Engineering and Applied Electrochemistry. 46 (5), (2010). p. 400 - 405. (in Russia) [М. В. Тесакова, В. И. Парфенюк. Электронная обработка материалов. 5 (2010). С. 11 - 16.].
7. Yu. M. Berezhnoy. Obtaining of ultradispersed powders of copper, stable water-soluble polymers, antifriction metal-polymer materials: Dissertacija na soiskanie stepeni kandidata tehnicheskih nauk. Novocherkassk. (2015) 134p. (in Russia) [Ю. М. Бережной. Получение ультрадисперсных порошков меди, стабилизированных водорастворимыми полимерами, для антифрикционных металло-полимерных материалов: дис. канд. тех. наук. Новочеркасск. 2015. 134с.].
8. A. I. Kozlov, V. L. Zbarsky. Russian Journal of General Chemistry. 3 (2006) P. 131 - 139. (in Russia) [А. И. Козлов, В. Л. Збарский. Российский химический журнал. 3 (2006) С. 131 - 139.].
9. T. A. Ovechkina, N. N. Gryzunova, A. A. Vikarchuk. Scientific Bulletin. 1 (7), (2016). P. 168 - 173. (in Russia) [Т. А. Овечкина, Н. Н. Грызунова, А. А. Викарчук. Научный вестник. 1 (7), (2016). С. 168 - 173.]. Crossref
10. N. N. Gryzunova, A. G. Denisova, I. S. Yasnikov, A. A. Vikarchuk. Russian Journal of Electrochemistry. 51 (12). (2015) P. 1176 - 1179. Crossref
11. I. S. Yasnikov, A. A. Vikarchuk. Bulletin of the Russian Academy of Sciences: Physics. 69 (9). (2005). P. 1548 - 1553. (in Russia) [И. С. Ясников, А. А. Викарчук. Известия российской академии наук. Серия физическая. 69 (9). (2005). С. 1378 - 1382.].
12. I. S. Yasnikov, A. A. Vikarchuk. Technical Physics Letters. 19 (2007). P. 24 - 31. (in Russia) [И. С. Ясников, А. А. Викарчук. Письма в Журнал технической физики.19 (2007). С. 24 - 31.].
13. I. S. Yasnikov, A. A. Vikarchuk. Metal Science and Heat Treatment. 3 (2007). P. 13 - 16. (in Russia) [И. С. Ясников, А. А. Викарчук. Металловедение и термическая обработка материалов. 3 (2007). С. 13 - 16.].
14. C. J. Love, J. D. Smith, Y. Cui, K. K. Varanasi. Nanoscale. 3 (2011). P. 4972.
15. A. A. Vikarchuk, N. N. Gryzunova, D. A. Denisova [et al.]. Journal of functional materials. 5 (2008). P. 163 - 174. (in Russia) [А. А. Викарчук, Н. Н. Грызунова, Д. А. Денисова [и др.]. Журнал функциональных материалов. 5 (2008). С. 163 - 174.].
16. U. Nerle, M. K. Rabinal. IOSR Journal of Applied Physics. 5 (2013). P. 01 - 07.
17. M. Perez-Tello, H. Y. Sohn, J. Lottiger. Minerals & metallurgical processing. 16 (2). (1999). P. 1 - 7.
18. Yasnikov I. S., Vikarchuk A. A. Technical Physics Letters. 32 (10). (2006). P. 825 - 826.
19. A. A. Vikarchuk, E. Yu. Vlasenkova, N. N. Gryzunova. Proceedings of the Samara scientific center Russian Academy of Sciences. S6 (2008). P. 44 - 49. (in Russia) [А. А. Викарчук, Е. Ю. Власенкова, Н. Н. Грызунова.Известия Самарского научного центра Российской академии наук.S6 (2008). С. 44 - 49.].
20. Gryzunova N. N., Vikarchuk A. A., Bekin V. V., Romanov A. E. Bulletin of the Russian Academy of Sciences: Physics. 79 (9). (2015). P. 1093 - 1097. (in Russia) [Н. Н. Грызунова, А. А. Викарчук, В. В. Бекин, А. Е. Романов // Известия Российской академии наук. Серия физическая, 2015, том 79, № 9, C. 1238-1243].

Cited by (2)

1.
A. Vikarchuk, N. Gryzunova, T. Borgardt. LOM. 9(1), 124 (2019). Crossref
2.
K. Savenko, S. Chuppina. J. Phys.: Conf. Ser. 1990(1), 012014 (2021). Crossref

Similar papers