Physico-mechanical and thermophysical properties of composites based on secondary polypropylene modified with ultra-high molecular weight polyethylene

A.R. Sadritdinov, E.M. Zakharova, A.G. Khusnullin, V.P. Zakharov show affiliations and emails
Received 01 May 2020; Accepted 13 July 2020;
This paper is written in Russian
Citation: A.R. Sadritdinov, E.M. Zakharova, A.G. Khusnullin, V.P. Zakharov. Physico-mechanical and thermophysical properties of composites based on secondary polypropylene modified with ultra-high molecular weight polyethylene. Lett. Mater., 2020, 10(4) 404-409
BibTex   https://doi.org/10.22226/2410-3535-2020-4-404-409

Abstract

The dependence of the elastic modulus on the composition of the compositeThe relevance of the problem under study is due to the development of a method for the rational use of polypropylene-based polymer waste (PP) by creating polymer composites in a mixture with ultra-high molecular weight polyethylene (UHMWPE). The article is aimed at studying the physico-mechanical and thermophysical characteristics of polymer composites based on PP and UHMWPE. The leading research methods for this problem are the study of the strength characteristics of polymer composites at break and bending, thermogravimetric analysis and differential scanning calorimetry. It is shown that the maximum torque in the mixing chamber during polymer melting does not additively change depending on the composition of the mixture. The increase in maximum torque more than 2 times occurs when filling the secondary polypropylene 5 % of the mass. UHMWPE and only 25 – 35 % decreases when filling UHMWPE with polypropylene in an amount of 10 – 50 % of the mass. Filling of secondary UHMWPE polypropylene up to 3 % of the mass slightly strengthens the composition, and also increases its modulus of elasticity at break and bending. UHMWPE allows increasing the thermal stability of secondary polypropylene by increasing the decomposition onset temperature by 12°C, the mass of the residue upon heating to 400°C, and peak displacements corresponding to the maximum decomposition rate of the main substance in the high temperature region. Two endothermic peaks corresponding to the melting temperature of the starting polymers are observed in the DSC thermogram in the heating mode; the melting temperature of polypropylene in the composite is 3.1– 4.8°C lower than that of an individual polymer. The crystallization of PP and UHMWPE in the mixture proceeds in the same temperature range and is characterized by the presence of one exothermic maximum on the DSC curve, which is shifted to the temperature region corresponding to the crystallization temperature of an individual UHMWPE.

References (15)

1. R. B. Salikhov, M. V. Bazunova, A. A. Bazunova, T. R. Salikhov, V. P. Zakharov. Letters on Materials. 8 (4), 485 (2018). Crossref
2. A. R. Sadritdinov, R. Y. Lazdin, E. M. Zakharova, A. S. Shurshina, V. P. Zakharov, E. I. Kulish. Letters on Materials. 8 (4), 406 (2018). Crossref
3. T. Unger, L. Klocke, K. Herrington, J. Miethlinger. Polymer Testing. 86, 106442 (2020). Crossref
4. N. A. Patil, J. Njuguna, B. Kandasubramanian. European Polymer Journal. 125, 109529 (2020). Crossref
5. Y. Wei, Z. Li, X. Liu, K. Dai, G. Zheng, C. Liu, J. Chen, C. Shen. Colloid and Polymer Science. 292 (11), 2891 (2014). Crossref
6. K. H. Lee, T. K. Sinha, K. W. Choi, J. S. Oh. Journal of Applied Polymer Science. 137, 48720 (2019). Crossref
7. S. Han, T. Zhang, Y. Guo, C. Li, H. Wu, S. Guo. Polymer. 182, 121819 (2019). Crossref
8. F. Guo, H. Jiang, H. Lü, Y. Yin. Journal of Beijing Institute of Technology (English Edition). 28 (3), 667 (2019). Crossref
9. J. Wang, C. Cao, X. Chen, S. Ren, D. Yu, X. Chen. Polymer. 169, 36 (2019). Crossref
10. J. Luo, Y. Liu, Y. Fu, J. Xie. Hecheng Shuzhi Ji Suliao / China Synthetic Resin and Plastics. 26 (1), 57 (2009).
11. S. V. Panin, D. G. Buslovich, L. A. Kornienko, Yu. V. Dontsov, L. R. Ivanova. Fundamental problems of modern materials science. 16 (3), 377 (2019). (in Russian) [С. В. Панин, Д. Г. Буслович, Л. А. Корниенко, Ю. В. Донцов, Л. Р. Иванова. Фундаментальные проблемы современного материаловедения. 16 (3), 377 (2019).]. Crossref
12. E. M. Lee, H. M. Jeong, B. K. Kim. Journal of Macromolecular Science. Part B: Physics. 49 (5), 854 (2010). Crossref
13. S. V. Panin, L. A. Kornienko, M. A. Poltaranin, T. Mandoung, L. R. Ivanova. Mechanical and tribotechnical characteristics of nanocomposites based on mixture of ultrahigh molecular weight polyethylene and polypropylene / Advanced Materials Research. 872, 36 (2015). Crossref
14. V. M. Egorov, V. A. Marikhin, L. P. Myasnikova, A. K. Borisov, E. M. Ivankova, S. S. Ivanchev. Solid State Physics. 61 (10), 1965 (2019). (in Russian) [В. М. Егоров, В. А. Марихин, Л. П. Мясникова, А. К. Борисов, Е. М. Иванькова, С. С. Иванчев. Физика твердого тела. 61 (10), 1965 (2019).]. Crossref
15. X. Zhang, Y. Tan, Y. Li, G. Zhang. Plastics, Rubber and Composites. 47 (7), 315 (2018). Crossref

Similar papers

Funding