First principles study of the atomic and electronic structure in graphene-fullerene hybrid systems

O.M. Holodova, N.V. Prutsakova, T.P. Zhdanova, A.A. Lavrentyev, I.V. Ershov, V.V. Ilyasov show affiliations and emails
Received 19 May 2020; Accepted 06 July 2020;
This paper is written in Russian
Citation: O.M. Holodova, N.V. Prutsakova, T.P. Zhdanova, A.A. Lavrentyev, I.V. Ershov, V.V. Ilyasov. First principles study of the atomic and electronic structure in graphene-fullerene hybrid systems. Lett. Mater., 2020, 10(4) 365-370
BibTex   https://doi.org/10.22226/2410-3535-2020-4-365-370

Abstract

The new hybrid nanostructures formed by graphene sheet and C60-fullerene fragment were studied using density functional theoryThe DFT study of atomic and electronic structure of the nanohybrid systems graphene-C60 as the possible structural elements of graphite-like amorphous carbon formed by pulsed laser evaporation was performed. Various models of the interaction of C60 fullerene fragments and whole fullerenes with single-layer graphene are considered. The mechanisms of adsorption, the local atomic structure, and the energy spectrum of the considered hybrid systems were studied in the framework of the Kohn-Sham method and the pseudopotential approximation. It is shown that depending on the orientation of the fullerene fragment, as well as on the distance of approach of this fragment relative to the sp2‑carbon plane the fragment can interact with graphene via physisorption mechanism, form different metastable structures, or form closed fullerene-like structures due to the formation of chemical bonds that integrate into the graphene sheet. In this work, we estimated the interatomic distances at the interfaces and the adsorption energy of fullerene fragments on graphene. The calculations showed that the electronic spectrum of the graphene-fullerene system with dispersion interaction in the interface was characterized by the superposition of the electronic states of the graphene sheet and the fullerene fragment separately, as well as by n-doping of the spectrum of this fragment. At the same time, it was demonstrated that the electronic energy spectrum of the integrated structures significantly differed from the spectra of pure graphene as well as С60, and was characterized by sp2- and sp3‑hybridized carbon. The comparison of the calculated graphene-½C60 spectra with graphene and graphene-C60 DOS as well as with experimental electron energy loss spectrum of the C60 and with the differential tunneling current-voltage characteristic of the system graphene / С60 / Cu was performed. Satisfactory fit was obtained for the calculated data and the experiment.

References (22)

1. P. Pisarik, J. Miksovsky, J. Remsa, J. Zemek, Z. Tolde, M. Jelinek. Appl. Phys. A. 124, 85 (2018). Crossref
2. L. A. Chernozatonskiy, P. B. Sorokin, A. A. Artyukh. Russian Chemical Reviews. 83 (3), 251 (2014). (in Russian) [Л. А. Чернозатонский, П. Б. Сорокин, А. А. Артюх. Успехи химии. 83 (3), 251 (2014).]. Crossref
3. X. Lu, M. Yu, H. Huang, R. S. Ruoff. Nanotechnology. 10, 269 (1999). Crossref
4. A. Sebastian, A. Pauza, C. Rossel, R. M. Shelby, A. F. Rodriguez, H. Pozidis, E. Eleftheriou. New J. Phys. 13, 013020 (2011). Crossref
5. A. M. Popov, A. A. Grishanin, N. G. Nikishin, G. N. Shumkin. Numerical methods and programming. 15 (2), 201 (2014). (in Russian) [А. М. Попов, А. А. Гришанин, Н. Г. Никишин, Г. Н. Шумкин. Вычислительные методы и программирование. 15 (2), 201 (2014).].
6. J. Robertson. Materials Science and Engineering: Reports. 37, 129 (2002). Crossref
7. E. A. Belenkov. Inorganic Materials. 37 (9), 928 (2001). Crossref
8. P. A. Borisova, M. S. Blanter, V. V. Brazhkin, V. A. Somenkov, V. P. Filonenko. J. Phys. Chem. Solids. 83, 104 (2015). Crossref
9. E. Monazami, L. Bignardi, P. Rudolf, P. Reinke. Nano Lett. 15 (11), 7421 (2015). Crossref
10. W. Koh, H. S. Moon, S. G. Lee, J. I. Choi, S. S. Jang. ChemPhysChem. 16 (4), 789 (2015). Crossref
11. M. Chen, R. Guan, S. Yang. Adv. Sci. 6 (1), 1800941 (2019). Crossref
12. C. L. Marquardt, R. T. Williams, D. J. Nagel. MRS Proceedings. 38, 325 (1984). Crossref
13. A. Sikora, F. Garrelie, C. Donnet, A. S. Loir, J. Fontaine, J. C. Sanchez-Lopez, T. C. Rojas. Journal of Applied Physics. 108 (11), 113516 (2010). Crossref
14. P. Giannozzi et al. J. Phys.: Condens. Matter. 29 (46), 465901 (2017). Crossref
15. J. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). Crossref
16. S. Grimme, J. Antony, S. Ehrlich, H. Krieget. J. Chem. Phys. 132 (15), 154104 (2010). Crossref
17. X. Wu, X. C. Zheng. Nano Lett. 9 (1), 250 (2009). Crossref
18. V. V. Ilyasov, I. V. Ershov, I. G. Popova, K. D. Pham, Ch. V. Nguyen. Superlattices and Microstructures. 117, 72 (2018). Crossref
19. S. M. Lee, R. J. Nicholls, D. Nguyen-Manh, D. G. Pettifor, G. A. D. Briggs, S. Lazar, D. A. Pankhurst, D. J. H. Cockayne. Chemical Physics Letters. 404, 206 (2005). Crossref
20. T. Sohier, M. Calandra, F. Mauri. Phys. Rev. B. 96, 075448 (2017). Crossref
21. D. Vanderbilt. Phys. Rev. B. 41, 7892 (1990). Crossref
22. H. Monkhorst, J. Pack. Phys. Rev. B. 13, 5188 (1976). Crossref

Similar papers