Graphite formation in diamond-like carbon thin films

V. Plotnikov, B. Dem'yanov, V. Yartsev, K. Solomatin show affiliations and emails
Received 09 January 2017; Accepted 30 May 2017;
This paper is written in Russian
Citation: V. Plotnikov, B. Dem'yanov, V. Yartsev, K. Solomatin. Graphite formation in diamond-like carbon thin films. Lett. Mater., 2017, 7(3) 234-238
BibTex   https://doi.org/10.22226/2410-3535-2017-3-234-238

Abstract

In the present work, particularities of the formation and structure of a graphite phase appearing in a thin amorphous diamond-like carbon (ta-C) film were studied using the method of high resolution electron microscopy. In order to obtain a thin carbon film, a neodymium laser NTS300 with a wavelength of 1064 nm was used. The film was deposited on a glass substrate in the process of a direct evaporation of a graphite target. Study of the graphite phase formation in the film was carried out using the high resolution transmission electron microscopy that allowed for a direct observation of the thin film atomic structure. Electron diffraction analysis shows that in local areas of a thin film a phase transition from amorphous diamond-like ta-C state to graphite occurs. Single crystals of graphite are oriented so that their basic hexagonal planes are parallel to the film surface. This is due to the fact that sp3 bonds are metastable and can be unstable, particularly on the film surface. Therefore, the transition of sp3 bonds to sp2 ones with the formation of planar complexes with a ring structure initially occurs on the film surface. The growth of a graphite crystal nucleus in the ta-C matrix increases the stress and stabilizes the diamond state. Due to this, the graphite phases form dominantly on the film edges. Analysis of electron diffraction patterns has shown that the interplanar spacings depend on the orientation of the planes relative to the film edge. Measurements of interplanar spacings reveals a complicated character of the stress state of the graphite lattice in the thin film. Along with tension-compression stresses, shear stresses are present and they result in a change of the angles between carbon interatomic bonds.

References (28)

1. J. Robertson. Mater. Sci. Eng. R 37, 129 - 281 (2002).
2. M. G. Beghi, A. C. Ferrari, K. B. K. Teo, J. Robertson, C. E. Bottani, A. Libassi, B. K. Tanner. Appl. Phys. Lett. 81, 3804 - 3806 (2002).
3. P. Zhang, B. K. Tay, C. Q. Sun, S. P. Lau. J. Vac. Sci. Technol. A 20, 1390 - 1394 (2002).
4. B. K. Tay, D. Sheeja, S. P. Lau, X. Shi, B. C. Seet, Y. C. Yeo. Surf. Coat. Technol. 130, 248 - 251 (2000).
5. K. W. R. Gilkes, P. H. Gaskell, J. Robertson. Phys. Rev. B. 51, 12303 - 12312 (1995).
6. Y. Lifshitz. Diamond Relat. Mater. 8, 1659 - 1676 (1999).
7. S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva, W. I. Milne. J. Appl. Phys. 79, 7234 - 7240 (1996).
8. R. Maheswaran, S. Ramaswamy, D. J. Thiruvadigal, C. Gopalakrishnan.J. Non-Crystalline Solids. 357, 1710 - 1715 (2011).
9. A. Sikora, F. Garrelie, C. Donnet, A. S. Loir, J. Fontaine, J. C. Sanchez-Lopez, T. C. Rojas. J. Appl. Phys. 108, 113516 (2010).
10. D. S. Lisovenko, J. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, S. V. Dmitriev. Physica status solidi (b). 253, 1295 - 1302 (2016).
11. N. Dwivedi, S. Kumar, H. K. Malik. J. Appl. Phys. 112, 023518 (2012).
12. S. V. Hainsworth, N. J. Uhure. International Materials Reviews, 52, 153 - 174 (2007).
13. A. Sikora, P. Paolino, H. Ftouni, C. Guerret-Piécourt, J.-L. Garden, A.-S. Loir, F. Garrelie, C. Donnet, O. Bourgeois. Appl. Phys. Lett. 96, 162111 (2010).
14. A. M. Asl, P. Kameli, M. Ranjbar, H. Salamati, M. Jannesari. Superlattices and Microstructures. 81, 64 - 79 (2015).
15. D. He, S. Zheng, J. Pu, G. Zhang, L. Hu. Tribology International A. 82, 20 - 27 (2015).
16. S. A. Hevia, F. Guzman-Olivos, I. Munoz, G. Munoz-Cordovez, S. Caballero-Bendixsen, H. M. Ruiz, M. Favre. Surf. Coat. Technol. 312, 55 - 60 (2017).
17. K. Bewilogua, D. Hofmann. Surf. Coat. Technol. 242, 214 - 225 (2014).
18. B. F. Dem’yanov, V. A. Plotnikov, V. I. Yartsev, C. V. Solomatin. BPMS. 12 (4), 437 - 443 (2016) (in Russian) [Б. Ф. Демьянов, В. А. Плотников, В. И. Ярцев, К. В. Соломатин. ФПСМ. 12 (4), 437 - 443 (2016)].
19. Островский В. С., Виргильев Ю. С., Костиков В. И., Шипков Н. Н. Искусственный графит. М.: Металлургия, 1986, 272 с.
20. Шулепов С. В. Физика углеграфитовых материалов. Челябинск: Металлургия. 1990. 336 с.
21. J. Dong, D. A. Drabold. Phys. Rev. B. 57, 15591 - 15598 (1998).
22. P. Kelires. J. Non-Crystal. Solids. 227 - 230, (1), 597 - 601 (1998).
23. V. I. Yartsev, B. F. Dem’yanov, V. A. Plotnikov, S. V. Makarov, C. V. Solomatin. BPMS. 12 (4), 477 - 481 (2015) (in Russian) [В. И. Ярцев, Б. Ф. Демьянов, В. А. Плотников, С. В. Макаров, К. В. Соломатин. ФПСМ. 12 (4), 477 - 481 (2015)].
24. J. P Sullivan, T. A. Friedmann, A. G. Baca. J. Electr. Mater. 26, 1021 - 1029 (1997).
25. M. D. Starostenkov, I. V. Loshchina, B. F. Dem’yanov. BPMS. 2 (1), 62 - 67 (2005) (in Russian) [М. Д. Старостенков, И. В. Лощина, Б. Ф. Демьянов. ФПСМ. 2 (1), 62 - 67 (2005)].
26. E. A. Belenkov, A. I. Sheinkman. Russian Physics Journal. 34 (10), 903 - 905 (1992) (in Russian) [Е. А. Беленков, А. И. Шейнкман. Известия вузов. Физика. № 10. С. 67 - 69. 1991].
27. E. A. Belenkov, E. A. Karnaukhov. Physics of the Solid State. 41 (4), 672 - 675 (1999) (in Russian) [Е. А. Беленков, Е. А. Карнаухов. Физика твердого тела. 41 (4), 744 - 747 (1999)].
28. X. Li, S. Xu, P. Ke, A. Wang. Surf. Coat. Technol. 258, 938 - 942 (2014).

Cited by (1)

1.
L. Kh. Rysaeva. J. Phys.: Conf. Ser. 938, 012071 (2017). Crossref

Similar papers