Experimental and theoretical study of the conditions for the formation of carbon nanostructures in an arc discharge in helium, argon and nitrogen

S.Z. Sakhapov ORCID logo , V.A. Andryushchenko, E.V. Boyko, M.S. Skirda, D.V. Smovzh show affiliations and emails
Received 31 August 2022; Accepted 09 October 2022;
Citation: S.Z. Sakhapov, V.A. Andryushchenko, E.V. Boyko, M.S. Skirda, D.V. Smovzh. Experimental and theoretical study of the conditions for the formation of carbon nanostructures in an arc discharge in helium, argon and nitrogen. Lett. Mater., 2022, 12(4) 321-326
BibTex   https://doi.org/10.22226/2410-3535-2022-4-321-326

Abstract

The synthesized material mainly consists of amorphous carbon with graphite crystallites, the maximum amount of which is formed during an arc discharge in nitrogen.Experimental measurements and numerical simulation of plasma parameters of an electric arc discharge in helium, argon, and nitrogen media at pressures of 25  Torr were carried out. On the basis of a theoretical model and experimental data on the interelectrode distance and the rate of sputtering of the anode, the radial distribution of the gas temperature is calculated. The obtained distribution is consistent with measurements carried out using a probe with a thermocouple, and the residence times of the sputtered material in different temperature ranges are determined. The properties and morphology of soot synthesized on the chamber walls were investigated by HRTEM, XRD and TGA methods. It is shown that during an arc discharge in nitrogen, the maximum number of graphite structures arises as a result of a longer residence of the sputtered carbon particles arising in the process at temperatures of about 700 –1700°C.

References (31)

1. K. P. Gopinath, D.-V. N. Vo, D. Gnana Prakash, A. Adithya Joseph, S. Viswanathan, J. Arun. Environ. Chem. Lett. 19, 557 (2021). Crossref
2. W. Li, R. Fang, Y. Xia, W. Zhang, X. Wang, X. Xia, J. Tu. Batteries & Supercaps. 2, 9 (2019). Crossref
3. O. Erol, I. Uyan, M. Hatip, C. Yilmaz, A. B. Tekinay, M. O. Guler. Nanomedicine. 14, 2433 (2018). Crossref
4. S. Farhat, C. D. Scott. J. Nanosci. Nanotechnol. 6, 1189 (2006). Crossref
5. C. Baddour, C. Briens. Int. J. Chem. React. Eng. 3 (2005). Crossref
6. Y.-W. Yeh, Y. Raitses. Carbon. 105, 490 (2016). Crossref
7. S. Iijima. Nature. 354, 56 (1991). Crossref
8. M. Keidar, I. I. Beilis. J. Appl. Phys. 106, 103304 (2009). Crossref
9. M. Kundrapu, M. Keidar. Phys. Plasmas. 19, 073510 (2012). Crossref
10. N. I. Alekseyev, G. A. Dyuzhev. Tech. Phys. 46, 1247 (2001). Crossref
11. N. I. Alekseyev, G. A. Dyuzhev. Tech. Phys. 47, 634 (2002). Crossref
12. N. I. Alekseyev, G. A. Dyuzhev. Tech. Phys. 50, 1551 (2005). Crossref
13. N. I. Alekseyev, G. A. Dyuzhev. Tech. Phys. 50, 1561 (2005). Crossref
14. H. Murayama, S. Tomonoh, J. M. Alford, M. E. Karpuk. Fuller. Nanotub. Carbon Nanostructures. 12, 1 (2003). Crossref
15. N. Arora, N. N. Sharma. Diam. Relat. Mater. 50, 135 (2014). Crossref
16. J. H. J. Scot, S. A. Majetich. Phys. Rev. B. 52, 12564 (2005). Crossref
17. A. A. Iurchenkova, E. O. Fedorovskaya, P. E. Matochkin, S. Z. Sakhapov, D. V. Smovzh. Int. J Energy Res. 44, 10754 (2020). Crossref
18. A. V. Zaikovskii, S. A. Novopashin. Phys. Status. Solidi A. 214, 1700142 (2017). Crossref
19. Z. Wang, N. Li, Z. Shi, Z. Gu. Nanotechnology. 21, 175602 (2010). Crossref
20. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. J. Phys. Chem. C. 113, 4257 (2009). Crossref
21. B. Shen, J. Ding, X. Yan, W. Feng, J. Li, Q. Xue. Appl. Surf. Sci. 258, 4523 (2012). Crossref
22. X. Zhao, M. Ohkohchi, H. Shimoyama, Y. Ando. J. Cryst. Growth. 198 - 199, 934 (1999). Crossref
23. B. Qin, T. Zhang, H. Chen, Y. Ma. Carbon. 102, 494 (2016). Crossref
24. S. Karmakar, A. B. Nawale, N. P. Lalla, V. G. Sathe, S. K. Kolekar, V. L. Mathe, A. K. Das, S. V. Bhoraskar. Carbon. 55, 209 (2013). Crossref
25. C. Wu, G. Dong, L. Guan. Physica E. 42, 1267 (2010). Crossref
26. B. Li, X. Song, P. Zhang. Carbon. 66, 426 (2014). Crossref
27. V. I. Berezkin. Phys. Status. Solidi B. 226, 271 (2001).<271::AID-PSSB271>3.0.CO;2-S. Crossref
28. D. V. Smovzh, I. A. Kostogrud, S. Z. Sakhapov, A. V. Zaikovskii, S. A. Novopashin. Carbon. 112, 97 (2017). Crossref
29. Y. Yamaguchi, S. Maruyama. Chem. Phys. Lett. 286, 336 (1998). Crossref
30. S. Usuba, H. Yokoi. J. Appl. Phys. 91, 10051 (2002). Crossref
31. A. V. Krestinin, A. P. Moravsky. Chem. Phys. Lett. 286, 479 (1998). Crossref

Similar papers

Funding

1. Russian Science Foundation - 18-19-00213