Dynamics of Zn segregation in symmetric tilt boundary ∑5(210)[001] of AlZn alloy under shear loading

Получена 09 ноября 2023; Принята 04 марта 2024;
Эта работа написана на английском языке
Цитирование: S.Y. Korostelev, D.S. Kryzhevich, K.P. Zolnikov. Dynamics of Zn segregation in symmetric tilt boundary ∑5(210)[001] of AlZn alloy under shear loading. Письма о материалах. 2024. Т.14. №1. С.85-90
BibTex   https://doi.org/10.48612/letters/2024-1-85-90
Grain boundary sliding caused the grain boundary region to thicken and the grain boundary structure was disordered. This resulted in the increased mobility of Zn atoms in this region and the formation of a segregation layer in the center of the grain boundary.Atomic mechanisms of segregation of Zn impurities in symmetric tilt grain boundary ∑5(210)[001] of an AlZn bicrystal under shear loading are studied using the molecular dynamics method. It is revealed that grain boundary sliding occurs during loading, which leads to a significant redistribution of impurity atoms in the grain boundary region. Grain boundary sliding causes structural disorder not only in the grain boundary, but also in the regions adjacent to it. Zinс atoms in the disordered zone have a significantly increased mobility and migrate to the center of the grain boundary during loading, thus displacing Al atoms from it. Mechanically activated migration results in the formation of a Zn-rich layer in the center of the grain boundary and Zn-poor layers at its edges. It is found that segregation processes in the grain boundary region are enhanced with a decrease in the impurity concentration in the specimen and with an increase in the shear velocity. Under shear loading, the impurity concentration in the grain boundary can increase by 3 – 4 times as compared to the average Zn concentration in the specimen.