Interaction of an edge dislocation with a 〈110〉 tilt boundary in nickel: molecular dynamics simulation

G.M. Poletaev ORCID logo , Y.V. Bebikhov, A.S. Semenov, R.Y. Rakitin показать трудоустройства и электронную почту
Получена 16 июля 2022; Принята 21 сентября 2022;
Эта работа написана на английском языке
Цитирование: G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, R.Y. Rakitin. Interaction of an edge dislocation with a 〈110〉 tilt boundary in nickel: molecular dynamics simulation. Письма о материалах. 2022. Т.12. №4. С.303-308
BibTex   https://doi.org/10.22226/2410-3535-2022-4-303-308

Аннотация

The interaction of a lattice edge dislocation with a 〈110〉 tilt boundary in nickel was studied by the molecular dynamics method in the case when the dislocation glide plane is parallel to the grain tilt axisThe interaction of a lattice edge dislocation with a 〈110〉 tilt boundary in nickel was studied by the molecular dynamics method in the case when the dislocation glide plane is parallel to the grain tilt axis. The dependence of the local threshold stress on the grain misorientation angle is obtained. It is found that with increasing misorientation angle, the local threshold stress increases, but the growth rate for low- and high-angle boundaries is different: for high-angle boundaries, this growth is slower. When studying the mechanism of overcoming the low-angle 〈110〉 tilt boundary by an edge dislocation in the considered orientation, it was found that the dislocation, in fact, does not pass through the boundary, but exchanges places with a grain-boundary dislocation, which are ordinary perfect edge dislocations in the low-angle 〈110〉 tilt boundaries. When studying the interaction of a dislocation with high-angle boundaries, a peculiarity was noticed, which consists in pushing two or three grain-boundary dislocations out of the boundary at once.

Ссылки (31)

1. T. C. Lee, I. M. Robertson, H. K. Birnbaum. Metallurgical Transactions A. 21, 2437 (1990). Crossref
2. Sh. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara. Science Advances. 2, e1501926 (2016). Crossref
3. H. Pan, Y. He, X. Zhang. Materials. 14 (4), 1012 (2021). Crossref
4. M. Hamid, H. Lyu, B. J. Schuessler, P. C. Wo, H. M. Zbib. Crystals. 7 (6), 152 (2017). Crossref
5. F. Javaid, H. Pouriayevali, K. Durst. Journal of Materials Research. 36, 2545 (2021). Crossref
6. Y. Cheng, M. Mrovec, P. Gumbsch. Philosophical Magazine. 88 (4), 547 (2008). Crossref
7. M. Dupraz, Zh. Sun, C. Brandl, H. Van Swygenhoven. Acta Materialia. 144, 68 (2018). Crossref
8. M. P. Dewald, W. A. Curtin. Modelling and Simulation in Materials Science and Engineering. 15 (1), S193 (2007). Crossref
9. C. Brandl, E. Bitzek, P. M. Derlet, H. Van Swygenhoven. Applied Physics Letters. 91 (11), 111914 (2007). Crossref
10. D. V. Bachurin, D. Weygand, P. Gumbsch. Acta Materialia. 58 (16), 5232 (2010). Crossref
11. E. Bayerschen, A. T. McBride, B. D. Reddy, T. Bohlke. Journal of Materials Science. 51 (5), 2243 (2016). Crossref
12. J. Li, S. J. Dillon, G. S. Rohrer. Acta Materialia. 57 (14), 4304 (2009). Crossref
13. S. Ratanaphan, D. L. Olmsted, V. V. Bulatov, E. A. Holm, A. D. Rolletta, G. S. Rohrer. Acta Materialia. 88, 346 (2015). Crossref
14. D. L. Olmsted, S. M. Foiles, E. A. Holm. Acta Materialia. 57 (13), 3694 (2009). Crossref
15. V. V. Bulatov, B. W. Reed, M. Kumar. Acta Materialia. 65, 161 (2014). Crossref
16. M. A. Tschopp, Sh. P. Coleman, D. L. McDowell. Integrating Materials and Manufacturing Innovation. 4, 176 (2015). Crossref
17. N. V. Malyar, B. Grabowski, G. Dehm, C. Kirchlechner. Acta Materialia. 161, 412 (2018). Crossref
18. Y. Liang, X. Yang, M. Gong, G. Liu, Q. Liu, J. Wang. Computational Materials Science. 161, 371 (2019). Crossref
19. C. Chen, F. Zhang, H. Xu, Z. Yang, G. M. Poletaev. Journal of Materials Science. 57, 1833 (2022). Crossref
20. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin. Letters on Materials. 10 (4s), 543 (2020). Crossref
21. J. P. Hirth, J. Lothe. Theory of Dislocations. 2nd ed. New York, Wiley (1982) 857 p.
22. G. M. Poletaev, I. V. Zorya. Journal of Experimental and Theoretical Physics. 131 (3), 432 (2020). Crossref
23. D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, F. Willaime. Acta Materialia. 124, 633 (2017). Crossref
24. C. Chen, F. Meng, P. Ou et al. Journal of Physics: Condensed Matter. 31, 315701 (2019). Crossref
25. G. P. Purja Pun, Y. Mishin. Philosophical Magazine. 89, 3245 (2009). Crossref
26. G. M. Poletaev. Journal of Experimental and Theoretical Physics. 133, 455 (2021). Crossref
27. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov. Journal of Micromechanics and Molecular Physics. 3 (1&2), 1850001 (2018). Crossref
28. G. M. Poletaev, I. V. Zorya. Technical Physics Letters. 46 (6), 575 (2020). Crossref
29. Sh. Zhao, Yu. N. Osetsky, Y. Zhang. Journal of Alloys and Compounds. 701, 1003 (2017). Crossref
30. G. Po, Y. Cui, D. Rivera, D. Cereceda, T. D. Swinburne, J. Marian, N. Ghoniem. Acta Materialia. 119, 123 (2016). Crossref
31. Y. Liang, X. Yang, M. Gong, G. Liu, Q. Liu, J. Wang. Computational Materials Science. 161, 371 (2019). Crossref

Другие статьи на эту тему