Molecular dynamics study of the formation of a nanocrystalline structure during crystallization and devitrification of nickel nanoparticles

G.M. Poletaev ORCID logo , Y.Y. Gafner, S.L. Gafner, A.V. Sannikov, I.V. Zorya show affiliations and emails
Received: 26 August 2023; Revised: 24 October 2023; Accepted: 27 October 2023
Citation: G.M. Poletaev, Y.Y. Gafner, S.L. Gafner, A.V. Sannikov, I.V. Zorya. Molecular dynamics study of the formation of a nanocrystalline structure during crystallization and devitrification of nickel nanoparticles. Lett. Mater., 2023, 13(4s) 420-425
BibTex   https://doi.org/10.22226/2410-3535-2023-4-420-425

Abstract

The influence of the rate of change in temperature and size of nickel nanoparticles on the features of the nanocrystalline structure formed during crystallization and devitrification was studied by the method of molecular dynamicsThis work is devoted to the study of factors affecting the characteristics of the nanocrystalline structure formed during the rapid cooling of nickel nanoparticles from the melt and during devitrification as a result of heating from low temperatures of particles with an amorphous structure using the method of molecular dynamics. The influence of the temperature change rate from 5 ∙1011 to 1013 K / s and the particle diameter from 1.5 to 11 nm on the features of the resulting structure, the amount of stored energy, the temperature of the onset of crystallization and devitrification was considered. It is shown that with an increase in the cooling rate in the case of the simulation of crystallization and the heating rate in the simulation of devitrification, the density of defects and the amount of stored energy in the final structure of nanoparticles increase. The temperature of the onset of crystallization and devitrification also depended on the rate of temperature change: the lower the rate, the higher the crystallization temperature and the lower the devitrification temperature. As the particle diameter decreases, the crystallization temperature decreases, while the devitrification temperature, on the contrary, increases.

References (39)

1. C. Humbert, T. Noblet, L. Dalstein, B. Busson, G. Barbillon. Materials. 12, 836 (2019). Crossref
2. Y. Mantri, J. V. Jokerst. ACS Nano. 14, 9408 (2020). Crossref
3. T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, V. Labhasetwar. Mol. Pharm. 2, 194 (2005). Crossref
4. S. Y. Shim, D. K. Lim, J. M. Nam. Nanomedicine. 3, 215 (2008). Crossref
5. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto. Nat. Nanotechnol. 16, 140 (2021). Crossref
6. S. Mitchell, R. Qin, N. Zheng, J. Perez-Ramirez. Nat. Nanotechnol. 16, 129 (2021). Crossref
7. P. Wagener, J. Jakobi, C. Rehbock, V. S. K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienleand, S. Barcikowski. Sci. Rep. 6, 23352 (2016). Crossref
8. A. R. Ziefuß, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W. J. Parak, S. Barcikowski. J. Phys. Chem. C. 122, 22125 (2018). Crossref
9. K. Amikura, T. Kimura, M. Hamada, N. Yokoyama, J. Miyazaki, Y. Yamada. Appl. Surf. Sci. 254, 6976 (2008). Crossref
10. S. Barcikowski, G. Compagnini. Phys. Chem. Chem. Phys. 15, 3022 (2013). Crossref
11. S.-X. Liang, L.-C. Zhang, S. Reichenberger, S. Barcikowski. Phys. Chem. Chem. Phys. 23, 11121 (2021). Crossref
12. J. Sun, S. K. Sinha, A. Khammari, M. Picher, M. Terrones, F. Banhart. Carbon. 161, 495 (2020). Crossref
13. D. S. He, Y. Huang, B. D. Myers, D. Isheim, X. Fan, G.-J. Xia, Y. Deng, L. Xie, S. Han, Y. Qiu, Y.-G. Wang, J. Luan, Z. Jiao, L. Huang, V. P. Dravid, J. He. Nano Research. 15, 5575 (2022). Crossref
14. Y. Qian, A. Silva, E. Yu, C. L. Anderson, Y. Liu, W. Theis, P. Ercius, T. Xu. Nat. Commun. 12, 2767 (2021). Crossref
15. Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, F. Tao. Chem. Soc. Rev. 41, 8140 (2012). Crossref
16. Z. Jia, Q. Wang, L. Sun, Q. Wang, L. C. Zhang, G. Wu, J. H. Luan, Z. B. Jiao, A. Wang, S. X. Liang, M. Gu, J. Lu. Adv. Funct. Mater. 29, 1807857 (2019). Crossref
17. Q. Chen, Z. Yan, L. Guo, H. Zhang, L.-C. Zhang, W. Wang. J. Mol. Liq. 318, 114318 (2020). Crossref
18. K. S. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater. 51, 5743 (2003). Crossref
19. M. A. Meyers, A. Mishra, D. J. Benson. Progress in Materials Science. 51, 427 (2006). Crossref
20. T. D. Nguyen, C. C. Nguyen, V. H. Tran. RSC Advances. 7, 25406 (2017). Crossref
21. G. T. T. Trang, P. H. Kien, P. K. Hung, N. T. T. Ha. J. Phys. Conf. Ser. 1506, 012020 (2020). Crossref
22. G. M. Poletaev, Y. Y. Gafner, S. L. Gafner. Letters on Materials. 13 (4), 298 (2023). Crossref
23. G. M. Poletaev, Y. V. Bebikhov, A. S. Semenov. Materials Chemistry and Physics. 309, 128358 (2023). Crossref
24. A. Wang, H. Yin, M. Ren, H. Lu, J. Xue, T. Jiang. New J. Chem. 34, 708 (2010). Crossref
25. Y. G. Morozov, O. V. Belousova, M. V. Kuznetsov. Inorg. Mater. 47, 36 (2011). Crossref
26. Y. Ruan, C. Wang, J. Jiang. J. Mater. Chem. A. 4, 14509 (2016). Crossref
27. G. P. Purja Pun, Y. Mishin. Philosophical Magazine. 89, 3245 (2009). Crossref
28. E. V. Levchenko, T. Ahmed, A. V. Evteev. Acta Mater. 136, 74 (2017). Crossref
29. G. M. Poletaev. Molecular dynamics research (MDR). Certificate of state registration of a computer program No. 2015661912 dated 12 Nov 2015. (in Russian) [Г. М. Полетаев. Molecular dynamics research (MDR). Свидетельство о государственной регистрации программы для ЭВМ № 2015661912 от 12.11.2015.].
30. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, A. A. Sitnikov. Journal of Experimental and Theoretical Physics. 136, 477 (2023). Crossref
31. G. Poletaev, Y. Gafner, S. Gafner, Y. Bebikhov, A. Semenov. Metals. 13, 1664 (2023). Crossref
32. G. M. Poletaev, M. D. Starostenkov. Technical Physics Letters. 35, 1 (2009). Crossref
33. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao. Nature. 512, 177 (2014). Crossref
34. W.-L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy. Phys. Rev. Lett. 102, 095701 (2009). Crossref
35. H. Y. Zhang, F. Liu, Y. Yang, D. Y. Sun. Sci. Rep. 7, 10241 (2017). Crossref
36. H. Tsuzuki, P. S. Branicio, J. P. Rino. Comput. Phys. Commun. 177, 518 (2007). Crossref
37. C. Chen, F. Zhang, H. Xu, Z. Yang, G. M. Poletaev. Journal of Materials Science. 57, 1833 (2022). Crossref
38. Y. Qi, Т. Cagin, W. L. Johnson, W. A. Goddard III. J. Chem. Phys. 115, 385 (2001). Crossref
39. A. Safaei, M. Attarian Shandiz, S. Sanjabi, Z. H. Barber. J. Phys. Chem. C. 112, 99 (2008). Crossref

Similar papers

Funding

1. Russian Science Foundation - 23-12-20003