Thermal behavior of Ni-doped CaCu3Ti4O12 ceramics

N.A. Zhuk, V.A. Belyy, E.U. Ipatova, T.K. Rocheva, I.V. Gruzdev ORCID logo , M.M. Ignatova show affiliations and emails
Received 01 February 2021; Accepted 26 March 2021;
Citation: N.A. Zhuk, V.A. Belyy, E.U. Ipatova, T.K. Rocheva, I.V. Gruzdev, M.M. Ignatova. Thermal behavior of Ni-doped CaCu3Ti4O12 ceramics. Lett. Mater., 2021, 11(2) 164-169


The reproduced exothermic effect in the temperature range 487-653K and endothermic at 1269K (1285K) for CaCu3-3хNi3хTi4O12(CaCu3Ti4-4хNi4хO12-δ) are observed on the DSC curves of the synthesized samples of both series, associated with thermal dissociation of CuO impurities.The calcium-copper titanate has attracted the attention of scientists in connection with the manifestation of gigantic values of permittivity in a wide frequency (102 –106 Hz) and temperature ranges (100 – 600 K), while not being a ferroelectric. In this article, we report on the results of studies of the thermal behavior of Ni-doped CCTO by thermal analysis methods. The interest in this work is due, first of all, to the fact that earlier, for iron-containing compounds, we found a reproducible low-temperature exothermic effect in the temperature range of 506 – 573 K, the nature of which has not been fully elucidated. It is only known that such a behavior of ceramics is recorded by the impedance spectroscopy data, it is not associated with the phase transition and is weaker for an undoped CCTO. Samples of Ni-doped CaCu3Ti4O12 ceramics of the composition CaCu3Ti4-4хNi4хO12−δ and CaCu3−3хNi3хTi4O12 (х = 0.005, 0.01, 0.02, 0.03, 0.04, 0.06) were obtained by the solid-phase synthesis method. According to the XRD results, copper (II) oxide may be present in trace amounts in all samples. The X-ray picture of CaCu3Ti4−4хNi4хO12−δ samples (x ≥ 0.04) revealed calcium titanate reflexes. The thermal behavior of the samples was studied by DSC and thermogravimetry methods up to 1323 K. The reproduced exothermic effect in the temperature range 487 – 653 K and endothermic at 1269 K (1285 K) for CaCu3−3хNi3хTi4O12 (CaCu3Ti4−4хNi4хO12−δ) are observed on the DSC curves of the synthesized samples of both series, associated with thermal dissociation of CuO impurities. Thermogravimetric curves in both cases show a mass loss of samples of no more than 0.35 mass.%. Samples analyzed by FTIR and mass spectrometry.

References (32)

1. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight. J. Sol. St. Chem. 151, 323 (2000). Crossref
2. H. E. Kim, S.-D. Yang, J.-W. Lee, H. M. Park, S.-I. Yoo. J. Cryst. Growth. 408, 60 (2014). Crossref
3. A. Deschanvres, B. Raveau, F. Tollemer. Bull. Soc. Chim. Fr. 11, 4077 (1967).
4. M. Ahmadipour, M. F. Ain, Z. A. Ahmad. Nano-Micro Lett. 8, 291 (2016). Crossref
5. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri. J. Alloy. Compd. 828, 154373 (2020). Crossref
6. T. Moriyama, A. Kan, H. Ogawa. Mater. Sci. Eng. B. 178, 875 (2013). Crossref
7. S. Kwon, C.-C. Huang, E. A. Patterson, D. P. Cann, E. F. Alberta, S. Kwon, W. S. Hackenberger, D. P. Cann. Mater. Lett. 62, 633 (2008). Crossref
8. C. Xu, X. Zhao, L. Ren, J. Sun, L. Yang, J. Guo, R. Liao. J. Alloys Comp. 792, 1079 (2019). Crossref
9. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju. RSC Advances. 6, 55984 (2016). Crossref
10. T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X. Cao, B. Wang. Ceram. Intern. 40, 9061 (2014). Crossref
11. J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen. J. Am. Ceram. Soc. 100, 4021 (2017). Crossref
12. S. Senda, S. Rhouma, E. Torkani, A. Megriche, C. Autret. J. Alloys Comp. 698, 152 (2017). Crossref
13. A. K. Rai, K. D. Mandal, D. Kumar, O. Parkash. J. Alloys Comp. 491, 507 (2010). Crossref
14. A. Onodera, K. Kawatani, M. Takesada, M. Oda, M. Ido. Jpn. J. App. Phys. 48, 09KF12 (1-3) (2009). Crossref
15. K. Kawatani, M. Takesada, M. Fukunaga, M. Oda, M. Ido, A. Onodera. Ferroelectrics. 402, 200 (2010). Crossref
16. M. V. Gorev, I. N. Flerov, A. V. Kartashev, S. Guillemet-Fritsch. Phys. Sol. St. 54, 1785 (2012). Crossref
17. X. Li, C. Chen, F. Zhang, X. Huang, Z. Yi. Appl. Phys. Lett. 116, 112901 (2020). Crossref
18. M. Zhang, K. Xu, G. Wang, C. Wang. Chin. Sci. Bull. 58, 713 (2013). Crossref
19. A. X. S. Bruker. Topas 5.0. General Profile and Structure Analysis Software for Powder Diffraction Data (2014) Karlsruhe, Germany.
20. N. A. Zhuk, S. V. Nekipelov, V. N. Sivkov, B. A. Makeev, R. I. Korolev, V. A. Belyy, M. G. Krzhizhanovskaya, M. M. Ignatova. Mater. Chem. Phys. 252, 123310 (2020). Crossref
21. N. A. Zhuk, S. M. Shugurov, V. A. Belyy, B. A. Makeev, M. V. Yermolina, D. S. Beznosikov, L. A. Koksharova. Ceram. Intern. 44, 20841 (2018). Crossref
22. N. A. Sekushin, N. A. Zhuk, L. A. Koksharova, V. A. Belyy, B. A. Makeev, D. S. Beznosikov, M. V. Yermolina. Letters on Materials. 9, 5 (2019). (in Russian) [Н. А. Секушин, Н. А. Жук, Л. А. Кокшарова, В. А. Белый, Б. А. Макеев, Д. С. Безносиков, М. В. Ермолина. Письма о материалах. 9, 5 (2019).]. Crossref
23. N. A. Zhuk, V. P. Lutoev, A. Y. Lysyuk, B. A. Makeev, V. A. Belyy, S. V. Nekipelov et al. J. Alloys Comp. 855, 157400 (2021). Crossref
24. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, N. A. Sekushin, A. I. Chichineva. Scripta Mater. 173, 6 (2019). Crossref
25. N. A. Sekushin, L. A. Koksharova, N. A. Zhuk. Letters on Materials. 10, 72 (2020). (in Russian) [Н.А. Секушин, Л.А. Кокшарова, Н.А. Жук. Письма о материалах.10, 72 (2020).]. Crossref
26. R. A. Lidin, V. A. Molochko, L. L. Andreeva. Reactions of inorganic substances: handbook. Moscow, Drofa (2007) 637 p. (in Russian) [Р. А. Лидин, В. А. Молочко, Л. Л. Андреева. Реакции неорганических веществ: Справочник. Москва, Дрофа (2007) 637 с.].
27. S. Jesurani, S. Kanagesan, R. Velmurugan, T. Kalaivani. J. Mater. Sci.: Mater. Electron. 23, 668 (2011). Crossref
28. N. Hadi, A. Farid, T.-E. Lamcharfi, A. Belaaraj, S. Kassou, F. Ahjyaje. Mediterranean J. Chem. 8, 245 (2019). Crossref
29. L. C. Kretly, A. F. L. Almeida, P. B. A. Fechine, R. S. de Oliveira, A. S. B. Sombra. J. Mater. Sci. Mater. Electron. 15, 657 (2004). Crossref
30. C. Masingboon, S. Maensiri, T. Yamwong, P. L. Anderson, S. Seraphin. Appl. Phys. A. 91, 87 (2007). Crossref
31. A. F. L. Almeida, P. B. A. Fechine, M. P. F. Graça, M. A. Valente, A. S. B. Sombra. J. Mater. Sci.: Mater. Electron. 20, 163 (2008). Crossref
32. P. Thomas, K. Dwarakanath, K. B. R. Varma, T. R. N. Kutty. J. Phys. Chem. Sol. 69, 2594 (2008). Crossref

Similar papers