Effect of strain of cryorolling on structure and strength of nickel

M.V. Markushev, I.S. Valeev, E.V. Avtokratova, R.R. Ilyasov, A.K. Valeeva ORCID logo , S.V. Krimsky, O.S. Sitdikov show affiliations and emails
Received 15 September 2022; Accepted 19 October 2022;
Citation: M.V. Markushev, I.S. Valeev, E.V. Avtokratova, R.R. Ilyasov, A.K. Valeeva, S.V. Krimsky, O.S. Sitdikov. Effect of strain of cryorolling on structure and strength of nickel. Lett. Mater., 2022, 12(4s) 409-413
BibTex   https://doi.org/10.22226/2410-3535-2022-4-409-413

Abstract

As a result of cryogenic deformation of Ni to 90%, a coarse fibered structure with a developed nanocellular substructure and extremely low amounts of dynamically recrystallized nanosized grains was formed.The effect of isothermal rolling at liquid nitrogen temperature with reductions up to 90 % on the structural-mechanical behavior of coarse-grained nickel was evaluated by TEM, SEM-EBSD and X-ray analysis methods, and microhardness measurements. The highest hardening rate of the metal was found at the initial stage of rolling (up to about 50 %), after which it decreased slightly with further reductions. Detailed analyses of the evolution of dislocation density, grain size and grain boundary spectra have shown that the behavior found was attributed to an extremely low deformation temperature, resulted in a decreased rate of accumulation of crystalline defects, as well as the formation and rearrangement of dislocation structure. Due to the strong suppression of dynamic recovery and recrystallization, even when rolling to a reduction of 90 %, a relatively homogeneous coarse-fibered structure with a developed nanocellular substructure and less than 5 % fraction of nanoscale dynamically recrystallized grains was formed. It was concluded that the main structural strengthening factors in cryogenically rolled nickel was the formation of low-energy dislocation structures and their transformations into a well-developed substructure with nanosized crystallites separated predominantly by low-angle boundaries.

References (25)

1. GOST 21957-76. Interstate standard. Cryogenic engineering. Terms and definitions. Moscow, Standartinform (2005) 7 p.
2. Y. Huang, P. B. Prangnell. Acta Mater. 56, 1619 (2008). Crossref
3. T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin. Acta Mater. 58, 5262 (2010). Crossref
4. E. Ma. JOM. 58, 49 (2006). Crossref
5. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushev. Trans. Nonfer. Met. Soc. of China (English Edition). 30 (1), 14 (2020). Crossref
6. K. Edalati, A. Bachmaier, V. A. Beloshenko, Y. Beygelzimer, V. D. Blank, W. J. Botta, et al. Mater. Res. Lett. 10 (4), 163 (2022). Crossref
7. J. Yin, J. Lu, H. Ma, P. Zhang. J. Mater. Sci. 39, 2851 (2004). Crossref
8. P. B. Prangnell, Y. Huang. J. Mater. Sci. 43, 7280 (2008). Crossref
9. K. Edalati, J. M. Cubero-Sesin, A. Alhamidi, I. F. Mohamed, Z. Horita. Mater. Sci. Eng. A. 613, 103 (2014). Crossref
10. L. Voronova, M. Degtyarev, T. Chashchukhina, T. Gapontseva, V. Pilyugin. Lett. Mater. 8 (4), 424 (2018). Crossref
11. M. Markushev, I. Valeev, A. Valeeva, R. Ilyasov, E. Avtokratova, S. Krymskiy, O. Sitdikov. Facta Univers. Ser.: Mech. Eng. On-Line. (08.2022). Crossref
12. I. Sabirov, M. Yu. Murashkin, R. Z. Valiev. Mater. Sci. Eng. A. 560, 1 (2013). Crossref
13. F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier, Amsterdam (2004) 658 p. Crossref
14. C. Kobayashi, T. Sakai, A. Belyakov, H. Miura. Phil. Mag. Letters. 87 (10), 751 (2007). Crossref
15. T. Sakai, H. Miura, X. Yang. Mater. Sci. and Eng. A. 499 (1-2), 2 (2009). Crossref
16. M. Y. Gutkin. Nanostructured Metals and Alloys. Processing, Microstructure, Mechanical Properties and Applications. A volume in Woodhead Publishing Series in Metals and Surface Engineering. Woodhead Publishing (2011) pp. 329 - 374. Crossref
17. Sh. Sh. Ibragimov, V. F. Reutov. Radiation defects in metals. Alma-Ata, Nauka (1988) pp. 3 - 24. (in Russian) [Ш. Ш. Ибрагимов, В. Ф. Реутов. Радиационные дефекты в металлах. Алма-Ата, Наука (1988) c. 3 - 24.].
18. A. Rohatgi, K. S. Vecchio, G. T. Gray. Metall. Mater. Trans. A. 32 (1), 135 (2001). Crossref
19. A. Rohatgi, K. S. Vecchio, G. T. Gray. Acta Mater. 49 (3), 427 (2001). Crossref
20. O. Sitdikov, R. Kaibyshev, T. Sakai. Mater. Sci. Forum. Trans Tech Publications, Ltd. (2003) pp. 521 - 526. Crossref
21. G. Salishchev, S. Mironov, S. Zherebtsov, A. Belyakov. Mater. Phys. and Mech. 25, 42 (2016). (in Russian) [Г. А. Салищев, С. Ю. Миронов, С. В. Жеребцов, А. Н. Беляков. Mater. Phys. and Mech. 25, 42 (2016).].
22. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev. Mat. Trans. 50 (1), 101 (2009). Crossref
23. O. Sitdikov, E. Avtokratova, T. Sakai. J. Alloys Compd. 648, 195 (2015). Crossref
24. O. S. Sitdikov, E. V. Avtokratova, B. I. Atanov, M. V. Markushev. Inorg. Mater. 58, 544 (2022). Crossref
25. I. S. Valeev, A. K. Valeeva, R. R. Ilyasov, O. S. Sitdikov, M. V. Markushev. Lett. Mater. 9 (4), 447 (2019). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of Russian Federation -