Effect of high-dense electropulsing with different energies on the structure and strength of nickel cryorolled to different strains

M.V. Markushev, I.S. Valeev, E.V. Avtokratova, R.R. Ilyasov, A.K. Valeeva ORCID logo , S.V. Krimsky, O.S. Sitdikov show affiliations and emails
Received 06 February 2023; Accepted 17 March 2023;
Citation: M.V. Markushev, I.S. Valeev, E.V. Avtokratova, R.R. Ilyasov, A.K. Valeeva, S.V. Krimsky, O.S. Sitdikov. Effect of high-dense electropulsing with different energies on the structure and strength of nickel cryorolled to different strains. Lett. Mater., 2023, 13(2) 126-131
BibTex   https://doi.org/10.22226/2410-3535-2023-2-126-131

Abstract

The effect of combination of isothermal cryorolling at liquid nitrogen temperature to strains ranging from 30 to 90% and subsequent high-dense electropulsing, on the structure and hardness of an initially coarse-grained pure nickel was studied.The effect of thermomechanical treatment, based on combination of isothermal cryorolling at liquid nitrogen temperature to strains ranging from 30 to 90 % and subsequent single electric pulsing with an integral current density Kj up to 1.6 ×104 A2 s / mm4, on the structure and hardness of an initially coarse-grained pure nickel was studied. It is shown that the considered treatment is quite a powerful method to control the Ni structure and strength through grain and grain boundary design. The right chose of conditions of cryogenic straining and electro-heat action give ability to high efficient production of abnormally and partially work-hardened sheets with light tuning of crystallite size and fractions of recrystallized grains and high angle boundaries, in particular, the fine-grained sheet with a grain size of about 3 μm and 50 % fraction of the twin boundaries.

References (37)

1. F. J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena, 2nd ed. Amsterdam, Elsevier (2004) 658 p. Crossref
2. V. I. Yelagin. Light Alloy Technology. 2, 6 (2008). (in Russian) [В. И. Елагин. Технология легких сплавов. 2, 6 (2008).].
3. R. Z. Valiev, I. V. Aleksandrov. Bulk Nanostructured Metallic Materials: Processing, Structure, and Properties. Moscow, Akademkniga (2007) 398 p. (in Russian) [Р. З. Валиев, И. В. Александров. Объемные наноструктурные металлические материалы: получение, структура и свойства. Москва, Академкнига (2007) 398 с.].
4. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov, M. F. Imayev, V. M. Imayev. Superplasticity of Ultrafine Grained Alloys: Experiment, Theory, Technologies. Moscow, Nauka (2014) 284 p. (in Russian) [Р. Р. Мулюков, Р. М. Имаев, А. А. Назаров, М. Ф. Имаев, В. М. Имаев. Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технологии. Москва, Наука (2014) 284 с.].
5. V. M. Segal, V. I. Reznikov, V. I. Kopylov et al. Processes of Metal Structure Formation upon Plastic Deformation. Minsk, Science and Technology (1994) 232 p. (in Russian) [В. М. Сегал, В. И. Резников, В. И. Копылов и др. Процессы пластического структурообразования металлов. Минск, Наука и техника (1994) 232 с.].
6. K. Edalati, A. Bachmaier, V. A. Beloshenko, Y. Beygelzimer, V. D. Blank, W. J. Botta, et al. Mater. Res. Lett. 10 (4), 163 (2022). Crossref
7. E. Avtokratova, O. Sitdikov, M. Markushev, M. Linderov, D. Merson, A. Vinogradov. Mater. Sci. Eng. A. 806, 140818 (2021). Crossref
8. E. Ma. JOM. 58 (4), 49 (2006). Crossref
9. J. Yin, J. Lu, H. Ma, P. Zhang. J. Mater. Sci. 39, 2851 (2004). Crossref
10. B. Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma, Y. T. Zhu. Adv. Mater. 18, 2280 (2006). Crossref
11. Y. Huang, P. B. Prangnell. Acta Mater. 56, 1619 (2008). Crossref
12. T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin. Acta Mater. 58, 5262 (2010). Crossref
13. D. C. C. Magalhães, A. M. Kliauga, M. Ferrante, V. L. Sordi. J Mater. Sci. 52, 7466 (2017). Crossref
14. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushev. Trans. Nonfer. Met. Soc. of China (English Edition). 30 (1), 14 (2020). Crossref
15. I. Sh. Valeev, A. Kh. Valeeva, R. R. Ilyasov, E. V. Avtokratova, S. V. Krimsky, O. Sh. Sitdikov, M. V. Markushev. Lett. Mater. 11 (3), 351 (2021). (in Russian) [И. Ш. Валеев, А. Х. Валеева, Р. Р. Ильясов, Е. В. Автократова, С. В. Крымский, О. Ш. Ситдиков, М. В. Маркушев. Письма о материалах. 11 (3), 351 (2021).]. Crossref
16. T. Shanmugasundaram, B. S. Murty, V. Subramanya Sarma. Proc. Int. Conf. on Advanced Materials and Composites (ICAMC-2007). Oct 24 - 26, Trivandrum, (2007) p. 577.
17. S. Cheng, Y. H. Zhao, Y. T. Zhu, E. Ma. Acta Mater. 55, 5822 (2007). Crossref
18. H. R. Song, Y. S. Kim, W. J. Nam. Met. Mat. Int. 12 (1), 7 (2006). Crossref
19. Y. B. Lee, D. H. Shin, W. J. Nam. Met. Mat. Int. 10 (5), 407 (2004). Crossref
20. M. V. Markushev, I. Sh. Valeev, E. V. Avtokratova, R. R. Ilyasov, A. Kh. Valeeva, S. V. Krimsky, O. Sh. Sitdikov. Lett. Mater. 12 (4s), 409 (2022). Crossref
21. M. Markushev, I. Valeev, A. Valeeva, R. Ilyasov, E. Avtokratova, S. Krymskiy, O. Sitdikov. FACTA UNIVERSITATIS. Series: Mechanical Engineering. 2022. (online first). Crossref
22. P. A. Khaimovich. Prob. Atomic Sci. Technology. 4, 28 (2006). (in Russian) [П. А. Хаймович. Вопросы Атомной Науки и Техники. 4, 28 (2006).].
23. I. S. Valeev, A. K. Valeeva, R. R. Ilyasov, O. S. Sitdikov, M. V. Markushev. Lett. Mater. 9 (4), 447 (2019). Crossref
24. T. Konkova, I. Valeev, S. Mironov, A. Korznikov, M. M. Myshlyaev, S. L. Semiatin. J. Mater. Res. 29 (22), 2727 (2014). Crossref
25. T. Konkova, I. Valeev, S. Mironov, A. Korznikov, G. Korznikova, M. M. Myshlyaev, S. L. Semiatin. J. All. Comp. 659, 184 (2016). Crossref
26. M. V. Markushev, R. R. Ilyasov, S. V. Krymskiy, I. S. Valeev, O. S. Sitdikov. Lett. Mater. 11 (4), 491 (2021). (in Russian) [М. В. Маркушев, Р. Р. Ильясов, С. В. Крымский, И. Ш. Валеев, О. Ш. Ситдиков. Письма о материалах. 11 (4), 491 (2021).]. Crossref
27. H. Knoepfel. Pulsed High Magnetic Fields. Amsterdam, North-Holland (1970) 392 p.
28. H. Conrad, N. Karam, S. Mannan. Scr. Metall. 17 (3), 411 (1983). Crossref
29. H. Conrad, A. F. Sprecher, W. D. Cao, X. P. Lu. JOM. 42, 28 (1990). Crossref
30. Y. Sheng, Y. Hua, X. Wang, X. Zhao, L. Chen, H. Zhou, J. Wang, C. C. Berndt, W. Li. Materials. 11 (2), 185 (2018). Crossref
31. Yu. V. Baranov, O. A. Troitsky, Yu. S. Avramov, A. D. Shlyapin. Physical fundamentals of electropulse and electroplastic treatments and new materials. Moscow, MSIU (2001) 844 p. (in Russian) [Ю. В. Баранов, О. А. Троицкий, Ю. С. Аврамов, А. Д. Шляпин. Физические основы электроимпульсной и электропластической обработок и новые материалы. Москва, МГИУ (2001) 844 с.].
32. R. W. Cahn, P. Haasen. Physical Metallurgy, 4th ed. North Holland (1996) 897 p.
33. Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu. Science. 362, 559 (2018). Crossref
34. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu. Science. 304, 422 (2004). Crossref
35. F. H. Duan, Y. Lin, Q. Li, J. H. Luan, J. Lu, J. Pan, Y. Li. J. Mat. Sci. Tech. 137, 123 (2023). Crossref
36. S. Kobayashi, T. Maruyama, S. Tsurekawa, T. Watanabe. Acta Mater. 60, 6200 (2012). Crossref
37. G. Meng, Y. Shao, T. Zhang, Y. Zhang, F. Wang. Electrochimica Acta. 53, 5923 (2008). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of Russian Federation -