Modeling the mechanical properties of lattice structures made by selective laser melting

V.S. Sufiiarov, A.V. Orlov, E.V. Borisov, V.V. Sokolova, M.O. Chukovenkova, A.V. Soklakov, D.S. Mikhaluk, A.A. Popovich show affiliations and emails
Received 01 November 2019; Accepted 09 January 2020;
This paper is written in Russian
Citation: V.S. Sufiiarov, A.V. Orlov, E.V. Borisov, V.V. Sokolova, M.O. Chukovenkova, A.V. Soklakov, D.S. Mikhaluk, A.A. Popovich. Modeling the mechanical properties of lattice structures made by selective laser melting. Lett. Mater., 2020, 10(2) 123-128
BibTex   https://doi.org/10.22226/2410-3535-2020-2-123-128

Abstract

The authors propose an original methodology for predictive modeling of graded materials mechanical properties with the help of numerical simulation tools for the further human femur endoprosthesis design.Nowadays, materials with graded density are of great interest. These materials are manufactured with the use of additive technologies and consist of multiple lattice structures with variable parameters and topology. By varying the parameters of the lattice structures, one can adjust the mechanical properties of the material as required. The paper proposes an original methodology for predictive modeling of mechanical properties of graded materials with the help of numerical simulation tools for the further design of the human femur endoprosthesis. The developed methodology is based on varying the topology of lattice structures with the consideration of the technological capabilities of additive manufacturing. The materials under the study allow creating endoprostheses with mechanical properties close to those of the human femur. The periodic structure of these materials ensures ingrowing of bone tissue into the endoprosthesis. Endoprostheses made of materials with graded density are superior to the traditionally manufactured prostheses. Endoprostheses manufactured by means of traditional methods are of higher stiffness than bones, thus, during exploitation they can cause bone damage or fracture. The authors applied a combination of biological and mechanical selection criteria for various zones of endoprosthesis and defined variants of topologies of the lattice structures corresponding to the mechanical properties and geometry of the human femur. With the use of the selected quasi-optimal lattice structures topologies, a femur-like endoprosthesis prototype can be designed for its further fabrication with the use of additive manufacturing methods.

References (22)

1. S. Limmahakhun, A. Oloyed, K. Sitthiseripratip, Y. Xiao, C. Yan. Additive Manufacturing. 15, 93 (2017). Crossref
2. S. Arabnejad Khanoki, D. Pasini. Journal of Biomechanical Engineering. 134 (3), 031004 (2012). Crossref
3. A. A. Popovich, V. Sh. Sufiiarov, I. A. Polozov, E. V. Borisov, D. V. Masaylo, P. N. Vopilovskiy, A. A. Sharonov, R. M. Tikhilov, A. V. Tsybin, A. N. Kovalenko, S. S. Bilyk. Biomedical Engineering. 50 (3), 202 (2016). Crossref
4. A. V. Orlov, D. V. Masaylo, V. Sh. Sufiiarov, E. V. Borisov, I. A. Polozov, A. A. Popovic. IOP Conference Series: Earth and Environmental Science. 194 (2), 022026 (2018). Crossref
5. R. Rahmanian, N. Shayesteh Moghaddam, C. Haberland, D. Dean, M. Miller, M. Elahinia. Behavior and Mechanics of Multifunctional Materials and Composites. 9058, 905814 (2014). Crossref
6. M. Helou, S. Vongbunyong, S. Kara. 26th CIPR Design Conference: Procedia CIPR. 50, 94 (2016). Crossref
7. J. D. Currey. Bones Structure and Mechanics. Princeton University Press (2002) 436 p.
8. G. L. Bilich, V. L. Nikolenko. In: Atlas anatomii cheloveka 1. (Ed. by G. A. Loginova). Fenix, Russia (2014). pp. 118 - 121. (in Russian) [Г. Л. Билич, В. Л. Николенко. Атлас анатомии человека 1. (Под ред. Г. А. Логинова). Феникс, Россия (2014). с. 118 - 121.].
9. H. Mehboob, F. Tarlochan, A. Mehboob, S. H. Chang. Materials & Design. 149, 101 (2018). Crossref
10. M. Long, H. J. Rack. A materials science perspective. Biomaterials. 19 (18), 1621 (1998).
11. M. E. Lynch, M. Mordasky, L. Cheng, A. To. Additive Manufacturing. 22, 462 (2018). Crossref
12. A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo. International Journal of Bioprinting. 2 (2), 78 (2016). Crossref
13. A. V. Orlov, V. Sh. Sufiiarov, E. V. Borisov, I. A. Polozov, D. V. Masaylo, A. A. Popovich, M. O. Chukovenkova, A. V. Soklakov, D. S. Mikhaluk. Letters on materials. 9 (1), 97 (2019). Crossref
14. A. Popovich, V. Sufiiarov, E. Borisov, I. Polozov. Key Engineering Materials. 651 - 653, 677 (2015). Crossref
15. V. Sh. Sufiyarov, E. V. Borisov, I. A. Polozov, D. V. Masailo. Tsvetnye Metally. 7, 68 (2018). Crossref
16. ANSYS® Mechanical APDL, Release 19, Help System, Mechanical APDL Theory Guide, ANSYS, Inc.
17. F. Liu, D. Z. Zhang, P. Zhang, M. Zhao, S. Jafar. Materials (Basel). 11 (3), 374 (2018). Crossref
18. M. S. Stein, S. A. Feik, C. D. Thomas, J. G. Clement, J. D. Wark. J. Bone. Miner. Res. 14 (4), 624 (1999). Crossref
19. C. Chappard, S. Bensalah, C. Olivier, P. J. Gouttenoire, A. Marchadier, C. Benhamou, F. Peyrin. Osteoporos. Int. 24 (3), 1023 (2013). Crossref
20. S. J. Hollister, C. Y. Lin, E. Saito, C. Y. Lin, R. D. Schek, J. M. Taboas, J. M. Williams, B. Partee, C. L. Flanagan, A. Diggs, E. N. Wilke, G. H. Van Lenthe, R. Muller, T. Wirtz, S. Das, S. E. Feinberg, P. H. Krebsbach. Orthod Craniofac Res. 8 (3), 162 (2005).
21. S. A Goldstein. Biomechanics. 20 (11-12), 1055 (1987). Crossref
22. M. Dumas, P. Terriault, V. Brailovski. Mater. Des. Elsevier Ltd. 121, 383 (2017). Crossref

Similar papers

Funding

1. Federal Targeted Programme “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020” - RFMEFI57817X0245