Brittle fracture resistance and damping properties of layered metal-polymer composites

S.V. Kuteneva, S.V. Gladkovsky, D.I. Vichuzhanin, P.D. Nedzvetsky ORCID logo show affiliations and emails
Received 04 May 2021; Accepted 06 June 2021;
This paper is written in Russian
Citation: S.V. Kuteneva, S.V. Gladkovsky, D.I. Vichuzhanin, P.D. Nedzvetsky. Brittle fracture resistance and damping properties of layered metal-polymer composites. Lett. Mater., 2021, 11(3) 279-284
BibTex   https://doi.org/10.22226/2410-3535-2021-3-279-284

Abstract

In the work the possibility of obtaining promising layered metal-rubber composites based on low-carbon steels, aluminum alloy Al-Mg3 and heat-and-frost-resistant rubber by hot pressing is studied. The influence of the composition and design of composites on the impact strength at temperatures of 20 and -60 °C and the damping properties of materials determined by the method of dynamic mechanical analysis is discovered.One of the topical trends in modern materials science is the development and study of new layered metal-polymer composites, which are increasingly used in aerospace engineering, automotive and transport engineering. The metal base of these composites provides a high level of strength properties and impact strength, and the polymer interlayer allows obtaining high damping properties due to its ability to dissipate the energy of elastic vibrations. Of a considerable practical interest is one of the varieties of metal-polymer composite materials based on a sandwich structure — layered steel-rubber composite characterized by pronounced viscoelastic properties, which allows them to be used as vibration damping elements in transport systems. In this work, the possibility of obtaining promising layered metal-rubber composites based on low-carbon steels (Fe-2Mn-1Si steel, IF steel), aluminum alloy Al-Mg3 and heat-and-frost-resistant rubber V-14-1NTA by hot pressing is studied. The influence of the composition and design of composites on the impact strength at temperatures of 20 and −60°C and the damping ability characteristics of materials such as the tangent of the angle of mechanical losses (tg δ), the modulus of elasticity (E') and the modulus of viscosity (E'') are determined by the method of dynamic mechanical analysis. The possibility of using layered metal-rubber composites with increased resistance to brittle fracture in the region of low climatic temperatures, as well as in structural elements of transport systems with high vibration resistance is shown.

References (17)

1. N. Chawla, K. N. Chawla. Metal matrix сomposites, 2nd ed. New York, Springer Science+ Business Media (2013) 370 p. Crossref
2. M. L. Kerber. Polymer composites: structure, properties, technology. St. Petersburg, CEP “Professiya” (2014) 592 p. (in Russian) [М. Л. Кербер. Полимерные композиционные материалы: структура, свойства, технология. Санкт-Петербург, ЦОП «Профессия» (2014). 592 с].
3. C. Bellini, V. D. Cocco, F. Iacoviello, L. Sorrentino. Frat. ed Integrita Strutt. 49, 739 (2019). Crossref
4. S. L. Bazhenov. Mechanics and technology of composites: scientific publication. Dolgoprudny, Publishing House “Intellect” (2014) 328 p. (in Russian) [С. Л. Баженов. Механика и технологии композиционных материалов: научное издание. Долгопрудный, Издательский дом «Интеллект» (2014). 328 с].
5. S. A. Chernikov, S. Samer. Vestnik MGTU im. N. E. Bauman. Ser. Instrumentation. 4, 111 (2006). (in Russian) [С. А. Черников, С. Самер. Вестник МГТУ им. Н. Э. Баумана. Сер. Приборостроение. 4, 111 (2006).].
6. S. A. Tipalin, B. Yu. Saprykin, N. F. Shpunkin. Izvestiya MSTU “MAMI”. 2 (2), 194 (2012). (in Russian) [С. А. Типалин, Б. Ю. Сапрыкин, Н. Ф. Шпунькин. Известия МГТУ «МАМИ». 2 (2), 194 (2012).].
7. F. Matthews, R. Rawlings. Composites. Mechanics and technology. Moscow, Technosphere (2004) 408 p. (in Russian) [Ф. Меттьюз, Р. Ролингс. Композитные материалы. Механика и технология. Москва, Техносфера (2004) 408 с.].
8. M. N. Kolodkin, A. A. Zaitsev. Transport of the Russian Federation. 40 - 41, 74 (2012). (in Russian) [М. Н. Колодкин, А. А. Зайцев. Транспорт Российской Федерации. 40 - 41, 74 (2012).].
9. E. P. Tselykh, D. A. Polonyankin, E. A. Rogachev, V. I. Surikov. Omsk Scientific Bulletin. 137 (1), 97 (2015). (in Russian) [Е. П. Целых, Д. А. Полонянкин, Е. А. Рогачев, В. И. Суриков. Омский научный вестник. 137 (1), 97 (2015).].
10. A. B. Vetoshkin, S. V. Usachev, Gudkov S. V. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 49 (10), 74 (2006). (in Russian) [А. Б. Ветошкин, С. В. Усачев, С. В. Гудков. Известия высших учебных заведений. Серия: Химия и химическая технология. 49 (10), 74 (2006).].
11. G. Polyzois, P. Lagouvardos, S. Zinelis, M. Frangou. Int. J. Adhes. Adhes. 30, 500 (2010). Crossref
12. S. V. Gladkovsky, P. D. Nedzvetsky, D. I. Vichuzhanin, S. V. Kuteneva, S. V. Lepikhin. DREAM. 2, 6 (2020). (in Russian) [С. В. Гладковский, П. Д. Недзвецкий, Д. И. Вичужанин, С. В. Кутенева, С. В. Лепихин. Diagnostics, Resource and Mechanics of materials and structures. 2, 6 (2020).]. Crossref
13. V. A. Sagomonova, V. I. Kislyakova, T. Yu. Tyumenev, V. A. Bolshakov. VIAM Proceedings. 10, 63 (2015). (in Russian) [В. А. Сагомонова, В. И. Кислякова, Т. Ю. Тюменева, В. А. Большаков. Труды ВИАМ. 10, 63 (2015).]. Crossref
14. Yu. V. Syty, V. A. Sagomonov, V. I. Kislyakova, V. A. Bolshakov. Aviation materials and technologies. 2, 51 (2012). (in Russian) [Ю. В. Сытый, В. А. Сагомонова, В. И. Кислякова, В. А. Большаков. Авиационные материалы и технологии. 2, 51 (2012).].
15. S. N. Sergeev, I. M. Safarov, A. V. Korznikov, R. M. Galeyev, S. V. Gladkovsky, D. I. Dvoynikov. Letters on Materials. 5 (1), 48 (2015). (in Russian) [С. Н. Сергеев, И. М. Сафаров, А. В. Корзников, Р. М. Галлеев, С. В. Гладковский, Д. А. Двойников. Письма о материалах. 5 (1), 48 (2015).]. Crossref
16. K. Babinsky, S. Primig, W. Knabl et al. JOM. 68 (11), 2854 (2016). Crossref
17. S. N. Sergeev, I. M. Safarov, A. P. Zhilyaev, R. M. Galeyev, S. V. Gladkovsky, D. I. Dvoynikov. Phys. Met. Metallogr. 122 (6), 665 (2021). (in Russian) [С. Н. Сергеев, И. М. Сафаров, А. П. Жиляев, Р. М. Галеев, С. В. Гладковский, Д. А. Двойников. ФММ. 122 (6), 665 (2021).]. Crossref

Similar papers

Funding

1. Russian Science Foundation - Grant (project no. 20-79-00084)
2. Ministry of Education and Science of the Russian Federation - АААА-А18-118020790147-4