Parameters of load-displacement curves and their correlation with the fracture surface in medium-carbon steel

V.A. Khotinov ORCID logo , A.B. Ovsyannikov, A.A. Andreev, V.M. Farber show affiliations and emails
Received 28 September 2021; Accepted 16 November 2021;
This paper is written in Russian
Citation: V.A. Khotinov, A.B. Ovsyannikov, A.A. Andreev, V.M. Farber. Parameters of load-displacement curves and their correlation with the fracture surface in medium-carbon steel. Lett. Mater., 2021, 11(4) 514-518
BibTex   https://doi.org/10.22226/2410-3535-2021-4-514-518

Abstract

Ductile-brittle transition behavior of medium-carbon steel with 0.32 %C-1,35 %Mn-0,003 %B by instrumented impact testing and fracture analysis was studied. On the load-displacement curves the periods corresponding to different zones of crack propagation are distinguished. Each period can be quantitatively described by a set of strength, plastic and gradient parameters.Impact tests are mandatory for a wide range of structural steel products to evaluate the required service life and operational safety. This test is especially relevant for products used in operation in climatic areas with a cold climate, since it allows one to determine the temperature range of the ductile-brittle transition. Depending on the structural-phase state of a metal, the type of the temperature relationship of impact toughness and its displacement on the temperature axis may differ significantly. For ductile materials, the temperature range of the ductile-brittle transition is shifted towards ultra-low negative temperatures whereas for materials in the embrittled condition it lies in the region of higher temperatures. Ductile-brittle transition behavior of medium-carbon steel with 0.32 % C-1.35 % Mn-0.003 % B in two conditions (after normalization and after quenching and tempering) by instrumented impact testing and fracture analysis was studied. On the descending branch of the force-displacement curves the periods corresponding to different zones of propagation of the main crack are distinguished: period I is the ductile zone of pure shear, period II is the zone of brittle fracture, period III is the ductile zone of break fracture. Each period can be quantitatively described by a set of strength, plastic and gradient parameters. It is established that the displacement to the beginning of linear period II (SIIb) and slope of the curve on it (ΔF / ΔS)II have a better correlation with shear fracture zone percentage (B) than the other distinguished parameters of force-displacement curves.

References (14)

1. Y. J. Chao, J. D. Ward Jr., R. G. Sands. Mat. Design. 28, 551 (2007). Crossref
2. A. B. Arabey, I. Yu. Pyshmintsev, A. O. Struin, V. M. Farber, V. A. Khotinov. Steel in Trans. 43 (3), 212 (2012). (in Russian) [А. Б. Арабей, И. Ю. Пышминцев, А. О. Струин, В. М. Фарбер, В. А. Хотинов. Известия ВУЗов. Черная металлургия. 43 (3), 212 (2012).]. Crossref
3. B. Wang, J. Lian. Mat. Sci. Eng. A. 592, 50 (2014). Crossref
4. Standard GOST 9454-78. Metals. Impact testing at low, room and elevated temperatures. Moscow, Publishing house of standards (1994) 19 p. (in Russian) [ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. Москва, Издательство стандартов (1994) 19 с.].
5. L. R. Botvina. Fracture: kinetics, mechanisms, general patterns. Moscow, Nauka (2008) 334 p. (in Russian) [Л. Р. Ботвина. Разрушение: кинетика, механизмы, общие закономерности. Москва, Наука (2008) 334 с.].
6. M. A. Shtremel. Fracture. Part 2: Fracture of the structures. Moscow, MISIS (2015) 976 p. (in Russian) [М. А. Штремель. Разрушение. Ч. 2: Разрушение структур. Москва, МИСИС (2015) 976 с.].
7. M. P. Manahan, T. Siewert. Pendulum Impact Testing: A Century of Progress. ESIS STP 1380 (2000) 400 p.
8. V. A. Khotinov, V. M. Farber, A. N. Morozova. In: Progress in Materials Sciences and Engineering. Springer (2018) p. 27 - 31.
9. V. A. Khotinov, V. M. Farber, A. N. Morozova. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015). (in Russian) [В. А. Хотинов, В. М. Фарбер, А. Н. Морозова. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015).]. Crossref
10. ASTM E2298. Standard test method for instrumented impact testing of metallic materials. ASTM (2013) 9 p.
11. Patent RF № 2570237/34, 10.12.2015. (in Russian) [Патент РФ № 2570237/34, 10.12.2015.].
12. Patent RF № 2646548/7, 05.03.2018. (in Russian) [Патент RU № 2646548/7, 05.03.2018.].
13. V. M. Farber, V. A. Khotinov. Metal Science and Heat Treatment. 63 (3-4), 183 (2021). (in Russian) [В. М. Фарбер, В. А. Хотинов. Металловедение и термическая обработка металлов. 63 (3-4), 183 (2021).]. Crossref
14. W. F. Hosford. Mechanical behavior of materials. New York, Cambridge University Press (2005) 425 p. Crossref

Similar papers