Influence of the Mo10Ni3C3B phase on the hardness and fracture toughness of Mo-Ni-C-B cermet: experimental and theoretical study

A.O. Boev ORCID logo , D.O. Poletaev, A.I. Kartamyshev ORCID logo , M.V. Boeva, T.N. Vershinina ORCID logo show affiliations and emails
Received 19 May 2020; Accepted 07 July 2020;
Citation: A.O. Boev, D.O. Poletaev, A.I. Kartamyshev, M.V. Boeva, T.N. Vershinina. Influence of the Mo10Ni3C3B phase on the hardness and fracture toughness of Mo-Ni-C-B cermet: experimental and theoretical study. Lett. Mater., 2020, 10(4) 387-391


We obtain a decreasing of hardness with increasing the fracture toughness of  Mo2NiB2 -  Ni cermets because of the formation of Mo10Ni3C3B phase. A comparative analysis of electronic structure showed relatively low hardness as well as higher plasticity of Mo10Ni3C3B  compared to  Mo2NiB2 boride due to more isotropic character of interatomic bonding.The high productivity of the cutting material is fully determined by its properties, especially the structure and phase composition. A whole range of materials with different physical and mechanical properties can be obtained by controlling these parameters for alloys of the same system. Cermets are materials that combine the high temperature resistance and hardness of ceramics and ductility of metals. Cermets based on the Mo-Ni-B system are promising materials in applications to cutting processing. Earlier, in this system doped with carbon, a new κ-phase Mo10Ni3C3B with hexagonal P63 / mmc crystal structure was detected. We obtained the decreasing of hardness and comparable values of the fracture toughness of Mo2NiB2‑Ni cermets due to the formation of Mo10Ni3C3B phase. To understand the effect of the Mo10Ni3C3B phase on the mechanical properties of the cermet, first-principles calculations were applied to investigate the elastic, electronic, and thermodynamic properties of this phase. Its mechanical and anisotropic properties were calculated based on the obtained elastic constants. Additionally, for a better understanding of the nature of interatomic bonding, an analysis of the electron localization function (ELF), calculated from first principles, was performed. We found that the Mo10Ni3C3B phase had a 42 % lower hardness and increased ductility compared to the Mo2NiB2 boride, which is expressed in the value of the bulk modulus-shear modulus ratio above the brittle-viscous transition. As follows from the results of the ELF analysis, a possible reason for this is the more isotropic nature of interatomic bonds, which indicates their higher degree of metallicity.

References (29)

1. L. Laperriere, G. Reinhart. CIRP encyclopedia of production engineering. Springer, Berlin, Heidelberg (2014). Crossref
2. M. B. Ivanov, T. N. Vershinina, V. V. Ivanisenko. Materials Science and Engineering: A. 763, 138117 (2019). Crossref
3. K. Takagi. Journal of Solid State Chemistry. 179, 2809 (2006). Crossref
4. T. N. Vershinina, A. O. Boev, M. B. Ivanov. Vacuum. 172, 109034 (2020). Crossref
5. F. Benesovsky. Modern Developments in Powder Metallurgy. Springer, Boston, MA (1966) pp. 175 - 189. Crossref
6. M. Komai, Y. Yamasaki, K. Takagi. Solid State Phenomena. 25, 531 (1992). Crossref
7. D. Kotzott, H. Hillebrecht. Journal of alloys and compounds. 494, 88 (2010). Crossref
8. L. Lutterotti, S. Matthies, H. Wenk. Newsletter of the CPD. 21, 14 (1999).
9. S. Sheikh, R. M’Saoubi, P. Flasar, M. Schwind, T. Persson, J. Yang, L. Llanes. International Journal of Refractory Metals and Hard Materials. 49, 153 (2015). Crossref
10. W. Kohn, L. Sham. Physical Review. 140 A, 1133 (1965). Crossref
11. G. Kresse, J. Furthmüller. Computational Materials Science. 6, 15 (1996). Crossref
12. D. Aksyonov, S. Fedotov, K. Stevenson, A. Zhugayevych. Computational Materials Science. 154, 449 (2018). Crossref
13. J. Perdew, K. Burke, M. Ernzerhof. Physical review letters. 77 (18), 3865 (1996). Crossref
14. L. Chaput, A. Togo, I. Tanaka, G. Hug. Physical Review B. 84 (9), 094302 (2011). Crossref
15. Y. Pan, W. Guan. Inorganic chemistry. 57, 6617 (2018). Crossref
16. J. Nye.Physical properties of crystals: their representation by tensors and matrices. Oxford university press (1985).
17. Y. Jian, Z. Huang, X. Liu, J. Xing. Results in Physics. 15, 102698 (2019). Crossref
18. Y. Luo, H. Guo, J. Guo, W. Yang. Materials. 11 (12), 2577 (2018). Crossref
19. X. Chen, H. Niu, D. Li, Y. Li. Intermetallics. 19, 1275 (2011). Crossref
20. S. Pugh. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45, 823 (1954). Crossref
21. D. Pettifor. Materials science and technology. 8, 345 (1992). Crossref
22. R. Mitra, Y. Mahajan. Bulletin of Materials Science. 18, 405 (1995). Crossref
23. G. Fuchs. Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior. Warrendale, Pa. (1990) pp. 391 - 400 (1990).
24. D. Sholl, J. Steckel. Density functional theory: a practical introduction. Wiley (2011).
25. G. Sin’ko. Physical Review B. 77 (10), 104118 (2008). Crossref
26. D. Chung, W. Buessem. Journal of Applied Physics. 38, 2535 (1967). Crossref
27. S. Ranganathan , M. Ostoja-Starzewski. Physical Review Letters. 101 (5), 055504 (2008). Crossref
28. W. Voigt. Lehrbuch der kristallphysik. (1928) 962 p.
29. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

Similar papers