Predicting the mechanical properties of UHTC

V.A. Skripnyak, V.V. Skripnyak
Received: 19 September 2017; Revised: 06 October 2017; Accepted: 06 October 2017
Citation: V.A. Skripnyak, V.V. Skripnyak. Predicting the mechanical properties of UHTC. Letters on Materials, 2017, 7(4) 407-411
BibTex   DOI: 10.22226/2410-3535-2017-4-407-411

Abstract

Solving of vital problems in development of modern aerospace equipment, power engineering, creation of ion-plasma technologies for processing new products and materials, the development of nuclear power reactors of the fourth generation requires to manufacture structural elements made of materials able to be operated in the temperature range from 1600 to 2200 K. The paper proposes a model for predicting the mechanical properties of high-temperature ceramic composites and extend the understanding the mechanisms of fracture at high temperatures in conditions of intensive dynamic effects.A model for predicting mechanical properties of ultra-high temperature ceramics (UHTC) and composites within a wide temperature range is presented. A model can be useful for predicting the mechanical properties of UHTC composites under dynamic loading and thermal shock. Results of calculations taking into account the dependences nonlinearity of the normalized elastic moduli on homologous temperature T/Tm in the range of 0.2 - 0.62. are presented.. Residual stresses in ZrB2 composites reinforced with particles of refractory borides, carbides and nitrides after selective laser sintering (SLS) or spark plasma sintering (SPS) were predicted. It is shown that the fracture toughness KIC of UHTC increases at the sintering temperature in the range 0.45 – 0.62 T/Tm. The residual stress in the matrix of ceramic composites can differ on a sign due to difference between the thermal expansion coefficients of the matrix and inclusion phases. It is shown that the fracture toughness and the flexural strength of ZrB2 matrix composites can be increased by 25% by the introduction of inclusions of specially selected refractory strengthening phases. Dependence of the normalized strength of composites ZrB2–B4C on the logarithm of normalized strain rate can be described by a power law in the range of strain rates from 10^-3 to 10^6 1/s and temperatures from 295 K to ~1673 K. Results of simulation confirm that the technologies of SLS and SPS can be used for the production of UHTC composites with high values of the specific strength and the fracture toughness.

References (22)

1.
S.‑Q. Guo, J. of Eur. Ceram. Soc., 29, 995 (2009). DOI: 10.1016/j.jeurceramsoc.2008.11.008
2.
J. Deckers, J. Vleugels, J.‑P. Kruth, J. Ceram. Sci. Tech., 5, 245 (2014). DOI: 10.4416/JCST2014-00032
3.
S. Pattnaik, M. C. Leu, and G. E. Hilmas, J. of Virtual and Physical Prototyping, [cited 4 April 2015]. Available from: http:// www.dtic.mil / cgi-bin / GetTRDoc?AD
4.
Handbook of Ceramic Composites. Ed. by N. P. Bansal. Boston / Dordrecht / London. Kluwer Academic Publishers. 2005. 554 p. ISBN 1 4 2 0 – 8133 – 2.
5.
G. B. Yadhukulakrishnan, S. Karumuri, A. Rahman, et al., Ceram. Int., 39, 6637 (2013).
6.
E. Zapata-Solvas, D. D. Jayaseelan, H. T. Lin, et al., J. Eur. Ceram. Soc., 33, 1373 (2013). DOI: 10.1016/j.jeurceramsoc.2012.12.009
7.
C. Hu, Y. Sakka, H. Tanaka, et al., J. Alloys and Comp., 494, 266 (2010). DOI: 10.1016/j.jallcom.2010.01.006
8.
S. Guo, Y. Kagawa, T. Nishimura, H. Tanaka, Ceram. Int., 34, 1811 (2008).
9.
S. G. Huang, K. Vanmeensel, J. Vleugels, J. Eur. Ceram. Soc., 34, 1923 (2014). 10.1016/j.jeurceramsoc.2014.01.022
10.
W. Pabst, E. Gregorova, G. Tich, J. Eur. Ceram. Soc, 26, 1085 (2006). DOI: 10.1016/j.jeurceramsoc.2005.01.041
11.
J. Watts, G. E. Hilmas, W. G. Fahrenholtz, J Eur. Ceram. Soc., 30, 2165 (2010). DOI: 10.1016/j.jeurceramsoc.2010.02.014
12.
J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, Mater. Chem. Phys. 112, 140 (2008). DOI: 10.1016/j.matchemphys.2008.05.048
13.
L. Silvestroni, D. Sciti, C. Melandri, S. Guicciardi, J. Eur. Ceram. Soc., 30, 2155 (2010). DOI: 10.1016/j.jeurceramsoc.2009.11.012
14.
W. G. Li, R. Z. Wang, D. Y. Li, D. N. Fang, Phys. Res. Int., 2011, 1 (2011). DOI: 10.1155/2011/791545
15.
W. G. Li, F. Yang, D. N. Fang, Acta Mech. Sinica, 26, 235 (2010). DOI: 10.1007/s10409-009-0326-7
16.
D. E. Wiley, W. R. Manning, O. Hunter, JR., J. Less-Common Metalls, 18., 149 (1969).
17.
S. Guicciardi, A. K. Swarnakar, O. Van der Biest et al., Scripta Mater. 62, 831 (2010). DOI: 10.1016/j.scriptamat.2010.02.011
18.
S. Iikubo, H. Ohtani and M. Hasebe, Mater. Trans., 51, 574 (2010). DOI: 10.2320/matertrans.MBW200913
19.
L. Rangaraj, S. J. Suresha, C. Divakar, and V. Jayaram, Metal. and mater. Trans. A, 39A, 831 (2008). DOI: 10.1007/s11661-008-9500-y
20.
J. Yin, Z. Huanga, X. Liu et al., Mater. Sci. & Eng. A, 565, 414 (2013).
21.
J. K. Sonber, T. S. R. Ch. Murthy, C. Subramanian, et al., Int. J. of Refr. Metal. and Hard Mater., 29, 21 (2011). DOI: 10.1016/j.ijrmhm.2010.06.007
22.
I. K. Vaganova, V. A. Skripnyak, V. V. Skripnyak, E. G. Skripnyak, Appl. Mech. and Mater., 756 , 187(2015).