Structure and fracture toughness of ceramics based on Al2O3 and ZrO2 with SrAl12O19 additive

N.Y. Cherkasova, A.A. Bataev, S.V. Veselov, R.I. Kuzmin, N.S. Stukacheva, T.A. Zimogliadova show affiliations and emails
Received 30 December 2018; Accepted 06 March 2019;
This paper is written in Russian
Citation: N.Y. Cherkasova, A.A. Bataev, S.V. Veselov, R.I. Kuzmin, N.S. Stukacheva, T.A. Zimogliadova. Structure and fracture toughness of ceramics based on Al2O3 and ZrO2 with SrAl12O19 additive. Lett. Mater., 2019, 9(2) 179-184
BibTex   https://doi.org/10.22226/2410-3535-2019-2-179-184

Abstract

Crack growth propagation change upon due to contact with the SrAl12O19 plateletsThe formation of second phases with a high aspect ratio (whiskers, fibers, platelets) in the structure of the material is an effective method of increasing the fracture toughness of ceramic materials. The paper presents the results of determination of the fracture toughness of ceramics based on Al2O3 and ZrO2 with the addition of 3 wt.% SrAl12O19 (SrA6). Experimental samples were prepared according to the following technology: dispersion of water suspensions in a bead mill, spray drying granulation, hydrostatic pressing and free sintering. Submicron powders of α-Al2O3 (CT3000 SG), 3Y-TZP (Stanford Materials) and SrO were used as raw materials. X-ray diffraction analysis revealed the presence of three phases in sintered ceramics: α-Al2O3, t-ZrO2 and SrAl12O19. Structural investigations were carried out using scanning electron microscopy. It has been determined that the size of SrAl12O19 platelets in alumina ceramics is 1.2 × 0.2 µm. The addition of 20 wt.% ZrO2 leads to an increase in platelet sizes up to 2.5 × 0.5 µm. However, this also leads to a decrease in the number of SrAl12O19 grains. The dimensions of the platelets are 0.8 × 0.2 µm in the material with 85 wt.% ZrO2. Therefore, it has been determined that an increase in the content of ZrO2 affects the platelets sizes. The fracture toughness by indentation under a load of 5 kg is calculated by the Niihara formula. It has been found that the presence of SrAl12O19 leads to an increase in the fracture toughness by 1.2 −1.6 times. The maximum value has been obtained for material 80(Al2O3-3SrA6)-20ZrO2. The study of the propagation of crack growth allows revealing inter- and transgranular fractures. The crack propagation path changes upon collision with a perpendicular oriented platelet of SrAl12O19. At the same time, there is a realization of the mechanism for increasing crack resistance due to the deviation of the path of the propagating crack. Another mechanism is associated with the dissipation of energy due to the destruction of the platelets.

References (19)

1. J. B. Wachtman, W. R. Cannon, M. J. Matthewson. Mechanical properties of ceramics. USA, John Wiley & Sons (2009) 479 p.
2. R. W. Rice. Treatise on Materials Science & Technology. 11, 199 (1977). Crossref
3. R. O. Ritchie. Mater. Sci. Eng. A. 103, 15 (1988). Crossref
4. Z. D. I. Sktani, M. M. Ratnam, Z. R. Ahmad. J. Austr. Ceram. Soc. 52 (1), 167 (2016).
5. L. Melk, J. J. R. Rovira, F. García-Marro, M. L. Antti, B. Milsom, M. J. Reece, M. Anglada. Ceram. Int. 41 (2), 2453 (2015). Crossref
6. E. A. Lyapunova, M. V. Grigoriev, A. P. Skachkov, O. B. Naimark, S. N. Kulkov. PNRPU Mechanics Bulletin. 4, 308 (2015) (in Russian) [Е. А. Ляпунова, М. В. Григорьев, А. П. Скачков, О. Б. Наймарк, С. Н. Кульков, Вестник Пермского национального исследовательского политехнического университета. Механика, 4, 308 (2015)]. Crossref
7. H. J. Kleebe, G. Pezzotti, G. Ziegler. J. Am. Ceram. Soc. 82 (7), 1857 (1999). Crossref
8. P. L. Chen, I. W. Chen. J. Am. Ceram. Soc. 75 (9), 2610 (1992). Crossref
9. G. Groppi, C. Cristiani, P. Forzatti. Appl. Catal. B. Environmental. 35 (2), 137 (2001). Crossref
10. F. Kern. J. Eur. Ceram. Soc. 34 (2), 413 (2014). Crossref
11. S. M. Naga, A. M. Hassan, H. F. El-Maghraby, M. Awaad, H. Elsayed. Int. J. Refract. Met. Hard Mater. 54, 230 (2016). Crossref
12. A. J. Sánchez-Herencia, R. Moreno, C. Baudın. J. Eur. Ceram. Soc. 20 (14-15), 2575 (2000). Crossref
13. S. Ori, T. Kojima, T. Hara, N. Uekawa, K. Kakegawa. J. Ceram. Soc. Jpn. 120 (1399), 111 (2012). Crossref
14. I. Touaiher, M. Saâdaoui, J. Chevalier, L. Preiss, H. Reveron. J. Eur. Ceram. Soc. 38 (4), 1778 (2018). Crossref
15. T. Oungkulsolmongkol, P. Salee-art, W. Buggakupta. Journal of Metals, Materials and Minerals. 20 (2), 71 (2017).
16. K. Niihara, R. Morena, D. P. H. Hasselman. J. Mater. Sci. Lett. 1 (1), 13 (1982). Crossref
17. F. F. Lange. J. Mater. Sci. 247, 17 (1982).
18. A. C. Fischer-Cripps. Introduction to contact mechanics. New York, Springer (2000) 216 p.
19. G. A. Gogotsi, V. I. Galenko, S. P. Mudrik, B. I. Ozersky, V. V. Khvorostyany, T. A. Khristevich. Ceram. Int. 36 (1), 345 (2010). Crossref

Similar papers

Funding

1. Russian Foundation for Basic Research - project № 18‑33‑01239