Adhesive and impact strength of hybrid layered metal-polymer composites reinforced by basalt fiber

S.V. Kuteneva, S.V. Gladkovsky, D.I. Vichuzhanin, P.V. Kosmachev, P.D. Nedzvetsky show affiliations and emails
Received: 05 May 2022; Revised: 11 July 2022; Accepted: 19 July 2022
Citation: S.V. Kuteneva, S.V. Gladkovsky, D.I. Vichuzhanin, P.V. Kosmachev, P.D. Nedzvetsky. Adhesive and impact strength of hybrid layered metal-polymer composites reinforced by basalt fiber. Lett. Mater., 2022, 12(3) 225-230


SEM image of hybrid five-layered composite based on steel and aluminium alloy with interlayers of basalt fiber-reinforced polymer.This work shows the possibility of obtaining hybrid layered metal-polymer composites based on low-carbon steel and aluminum alloys with interlayers of basalt fiber reinforced thermoplastic polymer — polyetheretherketone by methods of hot and cold bonding with the use of hot and cold curing adhesives, respectively. The adhesive tear and shear strength of composites obtained by two alternative methods and the impact strength of steel-polymer and aluminum alloy-polymer joints were evaluated. The tests of five-layered composites for impact bending on samples with “crack-arrester” type V-notch (with the orientation of the notch line across the composite layers) at temperatures of −60, +20, and +200°С were carried out. The analysis of the test results showed that the composites have increased strength at shear loads and resistance to brittle fracture at low climatic and high working temperatures. Fractographic analysis of the fracture surface of composites allowed to determine that the fracture proceeds through adhesive, cohesive, and mixed mechanisms. Cohesive fracture is initiated in the polymer layer by nucleation and crack growth along the fiber-matrix interface, as well as cracking of the basalt fibers.

References (21)

1. S. Pantelakis, K. Tserpes. Revolutionizing Aircraft Materials and Processes. 1st edn. Cham, Switzerland, Springer International Publishing (2020) 411 p. Crossref
2. K. K. Chawla. Composite materials: Sience and Engineering. 3rd edn. New York, Springer (2013) 483 p.
3. J. Delmonte. Metal / polymer composites. New York, Springer (2012) 268 p.
4. W. Hall, Z. Javanbakht. Design and manufacture of fiber-reinforced composites. Nature Switzerland, Springer (2021) 137 p. Crossref
5. Y. Swolfs, L. Gorbatikh, I. Verpoest. Compos. - A: Appl. Sci. Manuf. 67, 181 (2014). Crossref
6. R. Akkerman, S. P. Haanappel. 6-Thermoplastic Composites Manufacturing by Thermoforming. In: Advances in Composites Manufacturing and Process Design (ed. by Ph. Boisse). Elsevier (2015) pp. 111 - 129.
7. G. F. Zhelezina, A. S. Kolobkov, G. S. Kulagina, A. Ch. Kan. TRUDY VIAM. 2 (96), 10 (2021). (in Russian) [Г. Ф. Железина, А. С. Колобков, Г. С. Кулагина, А. Ч. Кан. Труды ВИАМ. 2 (96), 10 (2021).]. Crossref
8. The use of aluminum in car building. Railways of the World. 11, 16 (1995). (in Russian) [Использование алюминия в вагоностроении. Железные дороги мира. 11, 16 (1995).].
9. S. V. Kuteneva, S. V. Gladkovsky, D. I. Vichuzhanin, P. D. Nedzvetsky. Compos. Struct. 285, 115078 (2022). Crossref
10. S. V. Kuteneva, S. V. Gladkovsky, D. I. Vichuzhanin, P. D. Nedzvetsky. Letters on Materials. 11 (3), 279 (2021). (in Russian) [С. В. Кутенева, С. В. Гладковский, Д. И. Вичужанин, П. Д. Недзвецкий. Письма о материалах. 11 (3), 279 (2021).]. Crossref
11. A. H. Shaov, A. M. Kharaev, A. K. Mikitaev, G. S. Matvelashvili, Z. S. Khasbulatova. Plastic Mass. 3, 3 (1992). (in Russian) [А. Х. Шаов, A. M. Хараев, А. К. Микитаев, Г. С. Матвелашвили, З. С. Хасбулатова. Пластические массы. 3, 3 (1992).].
12. S. V. Panin, B. A. Lyukshin, S. A. Bochkareva, L. A. Kornienko, D. A. Nguyen, L. T. M. Hiep, I. L. Panov, N. Y. Grishaeva. Mater. 13(3), 524 (2020). Crossref
13. S. Wang, S. Wang, G. Li, J. Cui. Compos. Struct. 268, 114013 (2021). Crossref
14. A. A. Berlin, V. E. Basin. Fundamentals of polymer adhesion. 2nd edn. Moscow, Chimia (1974) 391 p. (in Russian) [А. А. Берлин, В. Е. Басин. Основы адгезии полимеров. 2-е изд. Москва, Химия (1974) 391 с.].
15. S. V. Kuteneva, S. V. Gladkovsky, D. A. Dvoynikov1, S. N. Sergeev. Letters on Materials. 9 (4), 442 (2019). Crossref
16. J. Huo, Z. Li. ACI Mater. J. 115 (3), 775 (2018). Crossref
17. J.-I. Choi, S. E. Park, H. H. Nguyen, Y. Lee, B. Y. Lee. Compos. Struct. 281, 114993 (2022). Crossref
18. P. V. Kosmachev, V. O. Alexenko, S. A. Bochkareva, S. V. Panin. Polymer. 13, 2268 (2021). Crossref
19. C. Colombo, L. Vergani, M. Burman. Compos. Struct. 94 (3), 1165 (2012). Crossref
20. I. D. G. Ary Subagia, A. H. Yuwono, Y. Kim. IOP Conf. Ser.: Mater. Sci. Eng. 553, 012035 (2019). Crossref
21. Yu. A. Mikhailin. Structural polymeric composite materials. St. Petersburg, NOT (2010) 822 p. (in Russian) [Ю. А. Михайлин. Конструкционные полимерные композиционные материалы. Санкт-Петербург, НОТ (2010) 822 с.].

Similar papers


1. Russian Science Foundation - 20-79-00084
2. Russian Academy of Sciences - AAAA-A18-118020790147-4