Mechanical properties of Ti-6Al-4V three-layer material

Accepted  10 December 2021
Citation: A.A. Sarkeeva. Mechanical properties of Ti-6Al-4V three-layer material. Lett. Mater., 2021, 11(4s) 571-574
BibTex   https://doi.org/10.22226/2410-3535-2021-4-571-574

Abstract

Mechanical properties of Ti-6Al-4V three-layer materialThe paper presents the results of studies on the mechanical behavior under impact and tensile loading of a Ti-6Al-4V three-layer material obtained by diffusion bonding at 800°C. Diffusion bonding is the process that integrates one material with another by pressure at a temperature below the melting points of materials. Diffusion bonding of Ti-6Al-4V alloy is particularly interesting for aerospace structures, ballistic armor and sports equipment manufacturing. Predominantly single spherical pores are present in the joint zone; chains of pores are extremely rare. The static mechanical properties of the laminate are at the level of properties of monolithic material. The laminate is characterized by a different fracture resistance depending on the layer orientation relative to the direction of impact load action. The impact strength value of the laminate is minimum in the crack short-transverse orientation due to the lower energy of crack propagation. The energy of crack nucleation in the studied laminate is the same for all studied orientations of crack propagation. The results of the evaluation of the relative value of the impact strength showed that the laminate has the highest fracture resistance for the crack divider orientation. The studied layer orientations relative to the direction of impact load action are characteristic for the real diffusion-bonded structures.

References (23)

1. Titanium and Titanium Alloys: Fundamentals and Applications. 1rd edn (ed. by C. Leyens, M. Peters). Weinheim, Wiley-VCH (2003) 523 p. Crossref
2. L. M. Kang, C. Yang. Advanced Engineering Materials. 21 (8), 1801359 (2019). Crossref
3. J. C. Williams, R. R. Boyer. Metals. 10 (6), 705 (2020). Crossref
4. W. Beck, L. Duong, H. Rogall. Materialwissenschaft und Werkstofftechnik. 39 (4 - 5), 293 (2008). Crossref
5. R. V. Safiullin. Lett. Mater. 2 (1), 36 (2012). (in Russian) [Р. В. Сафиуллин. Письма о материалах. 2 (1), 36 (2012).]. Crossref
6. A. A. Kruglov, R. Ya. Lutfullin, M. Kh. Mukhametrakhimov et al. Lett. Mater. 11 (4), 457 (2021). (in Russian) [А. А. Круглов, Р. Я. Лутфуллин, М. Х. Мухаметрахимов и др. Письма о материалах. 11 (4), 457 (2021).]. Crossref
7. E. Yu. Klassman, V. V. Astanin. Lett. Mater. 10 (1), 10 (2020). (in Russian) [Е. Ю. Классман, В. В. Астанин. Письма о материалах. 10 (1), 10 (2020).]. Crossref
8. R. W. Hertzberg, R. P. Vinci, J. L. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials. 4th edn. Inc, John Wiley & Sons (2021).
9. J. D. Embury, N. J. Petch, A. E. Wraith, E. S. Wright. Transaction of the Metallurgical Society of AIME. 239 (1), 114 (1967).
10. X. He, Y. Dong, Y. Li, X. Wang. Int. J. Fatig. 106, 1 (2018). Crossref
11. A. A. Sarkeeva, A. A. Kruglov, R. Ya. Lutfullin et al. Composites Part B. 187, 107838 (2020). Crossref
12. A. A. Sarkeeva. Letters on Materials. 10 (3), 345 (2020). (in Russian) [А. А. Саркеева. Письма о материалах. 10 (3), 345 (2020).]. Crossref
13. C. M. Cepeda-Jiménez, J. M. Garcia-Infanta, M. Rozuelo et al. Scr. Mater. 61 (4), 407 (2009). Crossref
14. R. P. Weber, K. K. Chawla, J. C. Miguez Suarez. Mater. Sci. Eng. A. 580, 279 (2013). Crossref
15. A. A. Sarkeeva, A. A. Kruglov, R. Ya. Lutfullin. IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012071 (2020). Crossref
16. D. V. Dunford, A. Wisbey. Materials Research Society Symposium Proceedings. 314, 39 (1993). https://doi.org/. Crossref
17. A. K. Akhunova, V. A. Valitov, E. V. Galieva. Lett. Mater. 11 (3), 254 (2021). (in Russian) [А. Х. Ахунова, В. А. Валитов, Э. В. Галиева. Письма о материалах. 11 (3), 254 (2021).]. Crossref
18. R. Ya. Lutfullin, O. A. Kaibyshev, R. V. Safiullin et al. Acta Metall Sin. 13, 561 (2000).
19. A. R. Safiullin, R. M. Galeyev, O. R. Valiakhmetov et al. Lett. Mater. 6 (4), 281 (2016). (in Russian) [А. Р. Сафиуллин, Р. М. Галеев, О. Р. Валиахметов и др. Письма о материалах. 6 (4), 281 (2016).]. Crossref
20. M. Georgiev. Impact Crack-Resisting of Metals. Sofia, Bulvest 2000 (2007) 231 p. (in Bulgarian) [М. Георгиев. Пукнатиноустойчивост на металите при ударно натоварване. София, БУЛВЕСТ 2000 (2007) 231 с.].
21. S. M. Gurevich, V. N. Zamkov, V. E. Blashuk et al. Metallurgiya i tekhnologiya svarki titana i ego splavov. 2th edn. Kiev, Naukova dumka (1986) 240 p. (in Russian) [С. М. Гуревич, В. Н. Замков, В. Е. Блащук и др. Металлургия и технология сварки титана и его сплавов. Киев, Науковадумка (1986) 240 с.].
22. N. F. Kazakov. Diffusion bonding of materials. Oxford, Pergamon (2015) 304 p.
23. J. Xiong, Y. Peng, M. Samiuddin, L. Yuan, J. Li. Journal of Materials Engineering and Performance. 29 (5), 3277 (2020). Crossref

Similar papers

Funding

1. Institute for Metals Superplasticity Problems of the Russian Academy of Sciences - АААА-А17-117041310221-5