The role of stop-off material in three-layer corrugated structures made of titanium alloys

A.A. Kruglov, R.Y. Lutfullin, M.K. Mukhametrakhimov, O.A. Rudenko, A.A. Sarkeeva ORCID logo , R.V. Safiullin show affiliations and emails
Received 17 August 2021; Accepted 19 October 2021;
This paper is written in Russian
Citation: A.A. Kruglov, R.Y. Lutfullin, M.K. Mukhametrakhimov, O.A. Rudenko, A.A. Sarkeeva, R.V. Safiullin. The role of stop-off material in three-layer corrugated structures made of titanium alloys. Lett. Mater., 2021, 11(4) 457-461
BibTex   https://doi.org/10.22226/2410-3535-2021-4-457-461

Abstract

Characteristic defects of solid-phase joints in a three-layer corrugated structure made of titanium alloy.In the manufacture of three-layer corrugated structures made of titanium alloys by diffusion bonding followed by superplastic forming, stop-off materials are used. The use of stop-off material makes it possible to selectively connect sheet blanks with each other and, as a result, get a hollow structure with an internal set of stiffeners in the form of a corrugation. The effect of stop-off materials based on boron nitride and yttrium oxide on the structure and mechanical properties of the titanium alloy Ti-6Al-4V is studied. Special attention is paid to the influence of stop-off materials on the quality of solid-phase joints in a corrugated structure. It is shown that the stop-off material based on yttrium oxide leads to the least degradation of the mechanical properties of the titanium alloy. It is established that the quality of the design depends not only on the composition of the stop-off materials, but also on the procedure of its processing before diffusion bonding of blanks. The composition of stop-off materials as binders includes organic components that contain light elements: nitrogen, carbon, oxygen and hydrogen. The latter are known to be harmful impurities for titanium and its alloys, and their chemical interaction with titanium is sharply intensified at high temperatures. The traditional temperatures of diffusion bonding and superplastic forming of the Ti-6Al-4V alloy are in the range of 900 – 950°C. Therefore, it is necessary to control and prevent the process of adsorption of hydrogen, nitrogen, oxygen and carbon atoms on the connected surfaces of titanium blanks, since this can have a noticeable effect on the quality of diffusion joints, will lead to defects, and the fatigue strength of the entire structure already depends on this.

References (23)

1. Patent US No 3927817, 23.12.1975.
2. Superplastic Forming of Structural Alloys: Proceedings of a symposium (ed. by N. E. Paton, C. H. Hamilton). Warrendale, PA, TMS−AIME (1982) 414 p.
3. J. D. Beal, R. Boyer, D. Sanders. In: ASM Handbook, Volume 14B, Metalworking: Sheet Forming (ed. by S. L. Semiatin). OH, USA, Materials Park, ASM International (2006) pp. 656 - 669.
4. L. D. Hefti. Mater. Sci. Forum. 551 - 552, 87 (2007). Crossref
5. Z. Q. Li, H. P. Guo. Aeronautical Manufacturing Technology. 8, 34 (2010).
6. Patent RF No 2548834, 20.04.2015. (in Russian) [Патент РФ № 2548834. 20.04.2015.].
7. Patent EP No 0568201, 01.04.1993.
8. M. W. Turner, I. J. Andrews. 4th European Conference on Superplastic Forming Euro SPF’05. In: Book of Papers. London, United Kingdom, IOM Communications Ltd. (2005) pp. 39 - 46.
9. B. Zhao, Z. Li, H. Hou, J. Liao, B. Bai. Rare Metal Materials and Engineering. 39 (6), 0963 (2010). Crossref
10. R. V. Safiullin, A. A. Kpuglov, O. A. Rudenko, S. A. Kharin, A. N. Sayranov, M. A. Morozov, V. B. Timohov, V. A. Kropotov. Titan. 4, 34 (2009). (in Russian) [Р. В. Сафиуллин, А. А. Круглов, О. А. Руденко, С. А. Харин, А. Н. Сайранов, М. А. Морозов, В. Б. Тимохов, В. А. Кропотов. Титан. 4, 34 (2009).].
11. R. R. Mulyukov, A. A. Nazarov, R. M. Imayev. Letters on Materials. 8 (4s), 510 (2018). Crossref
12. Z. Q. Li, B. Zhao, W. Chen. MATEC Web of Conferences. 21, 01005 (2015). Crossref
13. J. Shao, Z. Q. Li, H. Xu, X. Han, R. Zhang. Mater. Sci. Forum. 838 - 839, 585 (2016). Crossref
14. A. R. Safiullin, R. V. Safiullin, A. A. Kruglov. Rev. Adv. Mater. Sci. 25, 281 (2010).
15. R. G. Khazgaliev, A. M. Dilmukhametova, V. V. Astanin, R. V. Safiullin. Russian Physics Journal. 58 (6), 90 (2015). (in Russian) [Р. Г. Хазгалиев, А. М. Дильмухаметова, В. В. Астанин, Р. В. Сафиуллин. Изв. вузов. Физика. 58 (6), 90 (2015).].
16. A. A. Sarkeeva, A. A. Kruglov, R. Ya. Lutfullin, S. V. Gladkovskiy, A. P. Zhilyaev, R. R. Mulyukov. Composites Part B. 187, 107838 (2020). Crossref
17. A. A. Sarkeeva. Letters on Materials. 10 (3), 345 (2020). (in Russian) [А. А. Саркеева. Письма о материалах. 10 (3), 345 (2020).]. Crossref
18. U. Zwicker. Titanium and it’s alloys. Moscow, Metallurgiya (1979) 512 p. (in Russian) [У. Цвиккер. Титан и его сплавы. Москва, Металлургия (1979). 512 с.].
19. F. Pitt, M. Ramulu. JMEPEG. 13 (6), 727 (2004). Crossref
20. Patent RF No 2412017, 20.02.2011. (in Russian) [Патент РФ № 2412017, 20.02.2011.].
21. Patent RF No 2291019. 10.01.2007. (in Russian) [Патент РФ № 2291019. 10.01.2007.].
22. R. Ya. Lutfullin, A. A. Kruglov, M. Kh. Mukhametrakhimov, O. A. Rudenko. Letters on Materials. 5 (2), 185 (2015). (in Russian) [Р. Я. Лутфуллин, А. А. Круглов, М. Х. Мухаметрахимов, О. А. Руденко. Письма о материалах 5 (2), 185 (2015).]. Crossref
23. A. A. Kruglov, R. Ya. Lutfullin, R. R. Mulyukov, M. Kh. Mukhametrakhimov, O. A. Rudenko, R. V. Safiullin. Mater. Sci. Forum. 838 - 839, 610 (2016). Crossref

Similar papers

Funding

1. State assignment of the IMSP RAN - № АААА-А17-117041310221-5