Modeling of the process of superplastic forming of hemispherical shells from blanks of different profiles

G.R. Murzina, V.R. Ganieva, A.A. Kruglov, F.U. Enikeev show affiliations and emails
Received 28 September 2021; Accepted 30 November 2021;
Citation: G.R. Murzina, V.R. Ganieva, A.A. Kruglov, F.U. Enikeev. Modeling of the process of superplastic forming of hemispherical shells from blanks of different profiles. Lett. Mater., 2021, 11(4s) 548-552
BibTex   https://doi.org/10.22226/2410-3535-2021-4-548-552

Abstract

Distribution of the third main deformation the hemispherical shell from a conical blankIn the present work, the process of superplastic forming of hemispherical shells from blanks of different profiles on the basis of computer modeling is considered. A relevant task in superplastic forming of shells is to reduce the thickness difference, which will significantly improve the quality of their geometric characteristics with a general reduction in the cost of production. It is shown that the forming of a hemispherical shell from a billet of constant thickness with a fixed flange leads to an inevitable appearance of thickness differenses. It has been shown in a number of works that, in the case of superplastic forming of hemispherical shells from blanks of constant thickness made of titanium alloys, the difference in thickness exceeds 50 %. Various methods have been tried to solve this problem. From the analysis of published works, it follows that the solution to this problem lies in the use of a profiled blank. Traditionally, it is suggested to use a blank with a spherical profile. In the present work, a blank with a conical profile was used, since such a shape of the blank is easier both in manufacture and in calculations compared to a spherical one. The superplastic forming process was simulated using the ANSYS 10ED software package. Using the example of the formation of a hemispherical shell made of titanium alloy Ti-6Al-4V, it was found that the use of a blank with a conical profile makes it possible to reduce the thickness difference down to 7 %.

References (23)

1. W. Beck, L. Duong, H. Rogall. Materialwissenschaft und Werkstofftechnik. 39 (4-5), 293 (2008). Crossref
2. V. A. Golenkov, A. M. Dmitriev, V. D. Kuhar, S. Yu. Radchenko, S. P. Yakovlev, S. S. Yakovlev. Spetsial’nyye tekhnologicheskiye protsessy i oborudovaniye obrabotki davleniyem. Moscow, Mashinostroyeniye (2004) 464 p. (in Russian) [В. А. Голенков, А. М. Дмитриев, В. Д. Кухарь, С. Ю. Радченко, С. П. Яковлев, С. С. Яковлев. Специальные технологические процессы и оборудование обработки давлением. Москва, Машиностроение (2004) 464 с.].
3. J. H. Cheng. J. Mater. Proc. Technol. 58, 233 (1996). Crossref
4. R. Sadegi, Z. Pursell. Mater. Sci. Forum. 243 - 245, 719 (1997). Crossref
5. M. A. Khaleel, K. I. Johnson, M. J. Smith. Mater. Sci. Forum. 243 - 245, 739 (1997). Crossref
6. Y. M. Hwang, J. M. Liew, T. R. Chen, J. C. Huang. J. Mater. Proc. Technol. 57, 360 (1996). Crossref
7. N. Akkus, K. I. Manabe, M. Kawahara, H. Nishimura. Mater. Sci. Forum. 243 - 245, 729 (1997). Crossref
8. G. C. Cornfield, R. H. Johnson. Int. J. Mech. Sci. 12, 499 (1970). Crossref
9. A. N. Vargin, G. S. Burkhanov, N. C. Dung, V. I. Polkin. The International Scientific Journal. 6, 65 (2013). (in Russian) [А. Н. Варгин, Г. С. Бурханов, Н. C. Зунг, В. И. Полькин. Международный научный журнал. 6, 65 (2013).].
10. M. N. Kiryanova, E. V. Panchenko. Forging and Stamping Production. Material Working by Pressure. 1, 13 (2016). (in Russian) [М. Н. Кирьянова, Е. В. Панченко. КШП. ОМД. 1, 13 (2016).].
11. E. M. Seledkin, V. D. Kukhar, M. A. Tsepin, K. Yu. Apatov. Russian Journal of Non- Ferrous Metals. 51, 316 (2010). Crossref
12. Ya. A. Sobolev, I. S. Petukhov. Izvestiya Tula State University. 11 (1), 247 (2017). (in Russian) [Я. А. Соболев, И. С. Петухов. Известия Тульского государственного университета. Технические науки. 11 (1). 247 (2017).].
13. A. Dutta. Material Science and Engineering A. 371, 79 (2004). Crossref
14. W. A. Backofen, I. R. Turner, D. H. Avery. ASM Trans. 57, 980 (1964).
15. A. Yu. Samoilova, V. R. Ganieva, F. U. Enikeev, A. A. Kruglov. Letters on materials. 3 (3), 252 (2013). (in Russian) [А. Ю. Самойлова, В. Р. Ганиева, Ф. У. Еникеев, А. А. Круглов. Письма о материалах. 3 (3), 252 (2013).]. Crossref
16. A. A. Kruglov, A. F. Karimova, F. U. Enikeev. Letters on materials. 8 (2), 174 (2018). Crossref
17. A. A. Kruglov, O. A. Rudenko, R. R. Mulyukov, A. F. Karimova, F. U. Enikeev. Letters on Materials. 9 (4), 433 (2019). Crossref
18. F. U. Enikeev, A. A. Kruglov. International Journal of Mechanical Sciences. 5 (37), 473 (1995). Crossref
19. B. Liu, W. Wu, Y. Zeng. Int J Adv. Manuf Technol. 92, 2267 (2017). Crossref
20. E. S. Nesterenko, F. V. Grechnikov. Russian Journal of Non-Ferrous Metals. 58, 495 (2017). Crossref
21. J. T. Yoo, J. H. Yoon, H. S. Lee, S. K. Youn. Journal of Mechanical Science and Technology. 28 (8), 3095 (2014). Crossref
22. O. P. Tulupova, A. A. Slesareva, A. A. Kruglov, F. U. Enikeev. Letters on materials. 5 (4), 478 (2015). Crossref
23. O. P. Tulupova, V. R. Ganieva, A. A. Kruglov, F. U. Enikeev. Letters on materials. 7 (1), 68 (2017). (in Russian) [О. П. Тулупова, В. Р. Ганиева, А. А. Круглов, Ф. У. Еникеев. Письма о материалах. 7 (1), 68 (2017).]. Crossref

Similar papers

Funding