Influence of the inclination angle of stiffeners on folding during superplastic forming of corrugated core panels

A.A. Kruglov, R.R. Mulyukov, O.A. Rudenko, A.F. Karimova, F.U. Enikeev show affiliations and emails
Received 29 July 2019; Accepted 08 October 2019;
Citation: A.A. Kruglov, R.R. Mulyukov, O.A. Rudenko, A.F. Karimova, F.U. Enikeev. Influence of the inclination angle of stiffeners on folding during superplastic forming of corrugated core panels. Lett. Mater., 2019, 9(4) 433-435
BibTex   https://doi.org/10.22226/2410-3535-2019-4-433-435

Abstract

The diagram of the distribution of the first principal strain when φ = 60°, pmax = 4 MPa and holding time 3000 s.Superplastic forming of thin sheet corrugated structures is of special interest in developing aircraft technologies of new generation. The manufacture of such structures includes pressure welding of a package of three sheet blanks, consisting of two outer skin sheets and one inner core blank. The stop-off coating is applied to the inner surfaces of the skin sheets before welding. During superplastic forming of the package, the skin sheets take the form of a die cavity, while the core sheet stretches between the skins to form stiffeners. One of the main problems in manufacturing three-layer structures is known to be the formation of folds on the outer surface of the skins. The paper reports on studies of the influence of the inclination angle of stiffeners on folding. The choice of skin sheets with a thickness exceeding the thickness of the core sheet by 2 – 3 times may prevent the formation of folds. However, when manufacturing the corrugated structures of variable cross-section, such as hollow fan blades of an aircraft engine, the recommended ratio may not always be implemented. Moreover, its performance is limited by the permissible weight of the blade. In the present study, finite element modeling of the process of superplastic forming of three-layer structures made of titanium sheet alloy VT6 (analog of Ti-6Al-4V) is done using ANSYS software. According to the simulation results, it was found that with an increase in the inclination angle of the ribs, the holding time under pressure should be increased.

References (20)

1. Patent US No. 927817, 23.12.1975.
2. Superplastic Forming of Structural Alloys: Proceedings of a symposium (ed. by N. E. Paton, C. H. Hamilton). Warrendale, PA, TMS−AIME (1982) 414 p.
3. W. D. Brewer, R. K. Bird, T. A. Wallace. Materials Science and Engineering. A243, 299 (1998). Crossref
4. J. D. Beal, R. Boyer, D. Sanders. Forming of Titanium and Titanium Alloys. In: ASM Handbook, Vol. 14B, Metalworking: Sheet Forming (ed. by S. L. Semiatin). Ohio, Materials Park, ASM International (2006) pp. 656 - 669. Crossref
5. L. D. Hefti. Journal of Materials Engineering and Performance. 17 (2), 178 (2007). Crossref
6. A. Akhunova, S. Dmitriev, A. Kruglov, R. Safiullin. Deformatsiya i Razrushenie Materialov. 11, 41 (2012). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, А. А. Круглов, Р. В. Сафиуллин. Деформация и разрушение материалов. 11, 41 (2012).].
7. J. Shao, Z. Q. Li, H. Xu, X. Han, R. Zhang. Materials Science Forum. 838 - 839, 585 (2016). Crossref
8. J.-H. Cheng, S. Lee. J. Mater. Process. Technol. 45, 249 (1994). Crossref
9. Patent EP No. 0568201, 01.04.1993.
10. M. W. Turner, I. J. Andrews. 4th European Conference on Superplastic Forming Euro SPF’05. In: Book of Papers. London, United Kingdom, IOM Communications Ltd. (2005) pp. 39 - 46.
11. B. Zhao, Z. Li, H. Hou, J. Liao, B. Bai. Rare Metal Materials and Engineering. 39 (6), 0963 (2010). Crossref
12. A. Pashkevich, A. Orekhov, V. Smirnov. Izv. VUZ. Aviatsionnaya Tekhika. 4, 90 (1985). (in Russian) [А. Г. Пашкевич, А. В. Орехов, В. А. Смирнов. Изв. вузов. Авиационная техника. 4, 90 (1985).].
13. V. Smirnov, N. Birukov, V. Sadkov, I. Rostkovskii. Aviatsionnaya Industriya. 9, 46 (1986). (in Russian) [В. А. Смирнов, Н. М. Бирюков, В. В. Садков, И. Г. Ростковский. Авиационная промышленность. 9, 46 (1986).].
14. A. V. Kolesnikov, A. K. Shmakov. Vestnik IrGTU. 82 (11), 53 (2013). (in Russian) [А. В. Колесников, А. Л. Шмаков. Вестник ИрГТУ. 82 (11), 53 (2013).].
15. P. Anderson. Materials Science Forum. 838 - 839, 621 (2016). Crossref
16. O. Valiakhmetov, R. Galeev, V. Ivanko et al. Nanotechnologies in Russia. 5 (1-2), 108 (2010). Crossref
17. V. Ganieva, A. Kruglov, R. Lutfullin, O. Rudenko, F. Enikeev. IOP Conf. Ser. Mater. Sci. Eng. 447, 012050 (2018). Crossref
18. A. A. Kruglov, A. F. Karimova, F. U. Enikeev. Letters on materials. 8 (2), 68 (2018). Crossref
19. F. U. Enikeev. Russian Journal of Non-Ferrous Metals. 49 (1), 41 (2008). Crossref
20. F. U. Enikeev, A. A. Kruglov. International Journal of Mechanical Sciences. 37 (5), 483 (1995). Crossref

Similar papers

Funding

1. Institute for Metals Superplasticity Problems RAS - IMSP RAS No. АААА-А17-117041310221-5