Finite element modeling of folding during the superplastic forming of a corrugated core panel

A. Kruglov, A. Karimova, F. Enikeev


Finite element mesh for a corrugated core panel at the initial and final positions is shown. The way to ensure the formation of a corrugated core panel without external folds by the selection of technological parameters of the SPF process is considered.Corrugated core panels manufactured by methods of superplastic forming concurrent with diffusion bonding (SPF/DB) are promising for the production of high specific strength articles. One of serious problems arising in forming of corrugated core panels is concerned with the formation of the outer folds. The cause of folding is the uneven deformation of the skin sheets. In this study, the process of forming a corrugated core panel from a titanium alloy VT6 (analogue of Ti-6Al-4V) by computer simulation is considered. Finite element modeling is carrying out using ANSYS software. The formulation of the boundary value problem is stated in terms of the theory of creep. It is shown that after completion of the formation of stiffening ribs, it is possible to increase the working pressure to a maximum without damaging the structure. The results of numerical simulation showed that increasing the amount of pressure and holding time helps to eliminate folds. However, the pressure value is technically limited, and increasing the holding time reduces the economic efficiency of the process. It is noted that the process of forming a corrugated core panel has two characteristic stages. In the first stage, the core sheet is deformed under the conditions of superplasticity, stiffening ribs are formed. The first stage continues until the skin sections joined to the core touches the surface of the die. The second stage proceeds under conditions of creep up to smoothing the outer folds.

References (13)

Superplastic Forming of Structural Alloys: Proceedings of a symposium. Eds. N. E. Paton, C. H. Hamilton. Warrendale, PA, TMS−AIME (1982) 414 p.
W. D. Brewer, R. K. Bird, T. A. Wallace. Materials Science and Engineering. A243, 299 (1998).
J. D. Beal, R. Boyer, D. Sanders. In: ASM Handbook, Volume 14B, Metalworking: Sheet Forming. Ed. S. L. Semiatin. Materials Park, Ohio, ASM International (2006) 908 p. Forming of Titanium and Titanium Alloys. pp. 656 – 669. DOI: 10.1361/asmhba0005146
J.‑Ho Cheng, S. Lee. J. Mater. Process. Technol. 45, 249 (1994).
E. Chumachenko, O. Smirnov, M. Tsepin. Superplasticity: materials, theory, technology. Moscow, Librokom (2009) 320 p. (in Russian) [Чумаченко Е. Н., Смирнов О. М., Цепин М. А. Сверхпластичность: материалы, теория, технологии. Москва, Либроком (2009) 320с.] ISВN 5-484-00005-Х
A. Akhunova, S. Dmitriev, A. Kruglov, R. Safiullin. Deformatsiya i Razrushenie Materialov. 11, 41 (2012). (in Russian) [Ахунова А. Х., Дмитриев С. В., Круглов А. А., Сафиуллин Р. В. Деформация и разрушение материалов. 11, 41 (2012).]
J. Shao, Z. Q. Li, H. Xu, X. Han, R. Zhang. Materials Science Forum. 838 – 839, 585 (2016).
F. U. Enikeev. Russian Journal of Non-Ferrous Metals. 49(1), 41 (2008). DOI: 10.3103/S1067821208010082
F. U. Enikeev, A. A. Kruglov. International Journal of Mechanical Sciences. 37(5), 483 (1995).
A. A. Kruglov, A. Yu. Samoilova, A. A. Slesareva, O. P. Tulupova, F. U. Enikeev. Letters on Materials. 4(1), 75 (2014). (in Russian) [Круглов А. А., Самойлова А. Ю., Слесарева А. А., Тулупова О. П., Еникеев Ф. У. Письма о материалах. 4(1), 75 (2014).] DOI: 10.22226/2410-3535-2014-1-72-75
Patent EP № 0568201, 01.04.1993.
A. Akhunova, S. Dmitriev, A. Kruglov, R. Safiullin. Adv. Mater. 12, 44 (2011). (in Russian) [Ахунова А. Х., Дмитриев С. В., Круглов А. А., Сафиуллин Р. В. Перспективные материалы. 12, 44 (2011).]
P. Anderson. Materials Science Forum. 838 – 839, 621 (2016).