Peculiarities of deforming a rectangular edge welded envelope made of commercial titanium alloy

O.P. Tulupova, A.A. Slesareva, A. Kruglov, F. Enikeev show affiliations and emails
Received 28 March 2015; Accepted 05 October 2015;
Citation: O.P. Tulupova, A.A. Slesareva, A. Kruglov, F. Enikeev. Peculiarities of deforming a rectangular edge welded envelope made of commercial titanium alloy. Lett. Mater., 2015, 5(4) 478-481
BibTex   https://doi.org/10.22226/2410-3535-2015-4-478-481

Abstract

Superplastic forming of the rectangular edge welded envelope consisting of two rectangular sheets welded along their periphery is considered. The diameter of the cylindrical shell manufactured turns out to be considerably less as compared with the initial width of the rectangular edge welded envelope to be formed superplastically. The deforming of the envelope is effected in a free state, i.e. without fixing the edges of the envelope. Finite element analysis of the stress state is effected by using ANSYS software. Time dependencies of the dome height and width of the envelope are obtained for two cases: plane strain state and plane stress state. The following three stages of the deforming process have been established. Elastic bending of the envelope takes place at the first stage, when the dome height is sharply increasing while the width of the envelope is considerably diminishing. Second stage corresponds to the stationary superplastic flow when the dome height and width of the envelope are changing not so much. The third stage is characterizing by increasing the width of the envelope with the increase in the dome height up to its maximum value. The commercial titanium alloy VT14 (Ti-4,2Al-2,7Mo-1,2V) is used in experiments. The comparison of the analytical predictions with corresponding finite element solutions as well as with experimental data is made.

References (7)

1. O.M. Smirnov. Superplastic metal working techniques.Moscow: Mashinostroenie (1979) 184 p. (in Russian)[О.М. Смирнов Обработка металлов давлением в со-стоянии сверхпластичности. М.: Машиностроение, (1979) 184 c.].
2. T.M. Zagirov, A.A.Kruglov, F.U. Enikeev. Russian Journalof Non-Ferrous Metals 52(2), 175 (2011).
3. T.M. Zagirov, A.A.Kruglov, F.U. Enikeev. Kuznechno-shtampovochnoe proizvodtvo 4, 31 (2010) (in Russian)[Загиров Т.М., Круглов А.А., Еникеев Ф.У. Кузнечно-штамповочное производство 4, 31 (2010)].
4. A.A. Kruglov, F.U. Enikeev, R.Ya. Lutfullin. MaterialsScience and Engineering A 323, 416 (2002).
5. A.A.Kruglov, F.U. Enikeev. Mekhanika deformirovannogotverdogo tela i obrabotki metallov davleniem. Tula, TulGu. 2, 41 (2005) (in Russian) [А.А. Круглов, Ф.У.Еникеев. Известия Тульского государственного уни-верситета, Механика деформируемого твердого телаи обработка металлов давлением. Тула: ТулГУ. 2, 41(2005)].
6. F.U. Enikeev. Izvestiya vuzov. Tcvetnaya metalurgiya 1, 45(2008) (in Russian) [Ф.У. Еникеев. Известия вузов. Цв.металлургия 1, 43 (2008)].
7. A.Yu. Samoilova, V.R. Ganieva, F.U. Enikeev, A.A.Kruglov. Letters on Materials 3(3), 252 (2013) (inRussian) [А.Ю. Самойлова, В.Р. Ганиева, Ф.У. Еникеев, А.А. Круглов. Письма о материалах 3(3), 252 (2013)].

Cited by (1)

1.
G. Murzina, V. Ganieva, A. Kruglov, F. Enikeev. Lett. Mater. 11(4s), 548 (2021). Crossref

Similar papers