COMPARISON OF THE SIMULATION RESULTS FOR SUPERPLASTIC FORMING OF TWO TYPES OF MULTILAYER HOLLOW STRUCTURES

A. Safiullin1, A. Akhunova, S. Dmitriev, R. Safiullin
1Institute for Metals Superplasticity Problems of RAS, 39, Khalturin Str., Ufa, Russia, 450001
Abstract
The development of science and technology in the aviation industry requires not only the development of new manufacturing processes, but also improvement of the existing manufacturing processes of products of hard alloys, such as two-phase titanium alloys. One of such processes is the superplastic forming (SPF) combined with pressure welding (PW). The use of SPF / PW technique allows one to obtain parts and structures which cannot be manufactured by other methods, for example, multilayered hollow structures. Improvement of the technology of the multilayer structure SPF requires solving a number of problems. First, to obtain the most homogeneous deformation of the material when forming the structure, it is necessary to ensure the optimal temperature and strain rate to achieve the superplasticity (SP) conditions. Failure to comply with these conditions can lead to inhomogeneous deformation and, as a result, a substantial inhomogeneity of the thickness and even to fracture of the metal sheets. Secondly, the SP strain rate is very small and the corresponding time of SPF is very long and can last for hours. Each element of the structure is subject to different degrees of deformation and one needs to take care of the most deformable part of the structure, which are the ribs. Moreover, if the SPF is carried out at a constant pressure, the strain rate in the stiffeners may vary by several orders of mag-nitude, which leads to violation of the SP condition. Therefore, the pressure cycle must be designed so that the strain rate satisfies the optimal SP conditions and reduces the SPF time. In this work an attempt to improve the process of production of multilayer hollow structures made of VT6 titanium alloy through the SPF technology is made. Two types of structures are analyzed under the conditions of axial symmetry. Based on the results of numerical modeling, for both types of structures, the pressure cycle is offered to satisfy the deformation of the ribs under the superplasticity conditions while reducing the overall SPF time.
Accepted: 26 May 2015
Views: 92   Downloads: 26
References
1.
R. V. Safiullin. Letters on Materials. 2 (1), 32—35 (2012). (in Russian) [Р. В. Сафиуллин. Письма о материалах. 2 (1), 32—35 (2012).]
2.
R. V. Safiullin. Letters on Materials. 2 (1), 36—39 (2012). (in Russian) [Р. В. Сафиуллин. Письма о материалах. 2 (1), 36—39 (2012).]
3.
A. Kh. Akhunova, S. V. Dmitriev, A. R. Safiullin, R. V. Safiullin, F. F. Safin. Letters on Materials. 2 (2), 90—94 (2012). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, Р. В. Сафиуллин, А. Р. Сафиуллин, Ф. Ф. Сафин. Письма о материалах. 2 (2), 90—94 (2012).]
4.
A. Kh. Akhunova, S. V. Dmitriev. Deformation and Fracture of Materials. 11, 40—44 (2009). (in Russian) [А. Х. Ахунова, С. В. Дмитриев. Деформация и разрушение материалов. 11, 40—44 (2009).]
5.
A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, R. V. Safiullin. Deformation and Fracture of Materials. 9, 38—41 (2010). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, А. А. Круглов, Р. В. Сафиуллин. Деформация и разрушение материалов. 9, 38—41 (2010).]
6.
A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, R. V. Safiullin. Key Engineering Materials. 433, 319—323 (2010).
7.
A. R. Safiullin, A. A. Kruglov, R. V. Safiullin The useful model patent № 101949 (2011). (in Russian) [А. Р. Сафиуллин, А. А. Круглов, Р. В. Сафиуллин. Полое изделие с гофрированным заполнителем, патент на полезную модель № 101949 (2011).]
8.
R. Ya. Lutfullin. Letters on Materials. 1 (1), 59—64 (2011). (in Russian) [Р. Я. Лутфуллин. Письма о материалах. 1 (1), 59—64 (2011).]
9.
R. Ya. Lutfullin. Letters on Materials. 1 (2), 88—91 (2011). (in Russian) [Р. Я. Лутфуллин. Письма о материалах. 1 (2), 88—91 (2011).]
10.
A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, R. V. Safiullin. Deformation and Fracture of Materials. 11, 38—41 (2011). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, А. А. Круглов, Р. В. Сафиуллин. Деформация и разрушение материалов. 11, 38—41 (2011).]
11.
Safiullin R. V., Kruglov A. A., Akhunova A. Kh., Safiullin A. R., Dmitriev S. V. Materialwissenschaft und Werkstofftechnik. 43 (9), 786—788 (2012).
12.
A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, R. V. Safiullin. Journal of advanced materials. 12, 42—44 (2011). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, А. А. Круглов, Р. В. Сафиуллин. Перспективные материалы. 12, 42—44 (2011).]
13.
M. S. Nikitin, T. M. Zagirov, F. U. Enikeev. Engineering Technology. 8, 5—10 (2010). (in Russian) [М. С. Никитин, Т. М. Загиров, Ф. У. Еникеев. Технология машиностроения. 8, 5—10 (2010).]
14.
F. U. Enikeev. Proceedings of the higher academic institutions. Non-ferrous metallurgy. 1, 43—49 (2008). (in Russian) [Ф. У. Еникеев. Известия высших научных заведений. Цветная металлургия. 1, 43—49 (2008).]
15.
A. Kh. Akhunova, S. V. Dmitriev, A. R. Safiullin, R. V. Safiullin, F. F. Safin. Journal of advanced materials. 15, 114—118 (2013). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, Р. В. Сафиуллин, А. Р. Сафиуллин, Ф. Ф. Сафин. Перспективные материалы. 15, 114—118 (2013).]
16.
A. Kh. Akhunova, A. I. Pshenichnyuk, S. V. Dmitriev, A. R. Safiullin, R. V. Safiullin. Deformation and Fracture of Materials. 7, 33—38 (2013). (in Russian) [А. Х. Ахунова, А. И. Пшеничнюк, С. В. Дмитриев, Р. В. Сафиуллин, А. Р. Сафиуллин. Деформация и разрушения материалов. 7, 33—38 (2013).]