To the relation between the orientation of the pore channels and the mechanical properties of porous NiTi shape memory alloy

E.N. Iaparova, A.E. Volkov, M.E. Evard ORCID logo show affiliations and emails
Received: 29 April 2020; Revised: 25 August 2020; Accepted: 08 September 2020
Citation: E.N. Iaparova, A.E. Volkov, M.E. Evard. To the relation between the orientation of the pore channels and the mechanical properties of porous NiTi shape memory alloy. Lett. Mater., 2020, 10(4) 501-505


The functional and mechanical properties of porous shape memory alloys are determined by the phase transformations and the features of the pore structure. The modeling results aimed at clarifying the influence of these factors on the behavior of porous NiTi.The deformation behavior of porous shape memory alloy (SMA) is determined both by the features of their inhomogeneous structure and the martensitic transformation. The present work shows the results of simulation aimed at clarifying the influence of these factors on the behavior of porous SMA. The structures of porous samples with different orientations of the pore channels are approximated by sets of beams of various configurations, and the constitutive relations of the microstructural model are used for calculations of the strain associated with martensitic transformations. The calculations are performed for a dense SMA sample, porous SMA samples with longitudinal and transverse orientation of the pore channels and similar porous samples that do not undergo martensitic transitions. Simulations of isothermal compression at different temperatures and strain variations at cooling and heating under a constant stress are carried out. It is shown that the reorientation of martensite in a dense SMA specimen begins at a higher stress than in porous specimens. Moreover, a dense sample has a higher yield stress in both austenitic and martensitic states. At the same stress level, a porous SMA sample with transverse pore channels accumulates a larger strain than a sample with longitudinal channels. The same relation is observed for similar samples of an alloy without transformations. Porous SMA accumulates greater strain in comparison with common porous metal due to the reorientation of martensite and pseudoelasticity. The largest strain accumulated on cooling under a constant stress among the samples under consideration occurs in a porous sample with transverse pore channels.

References (21)

1. V. I. Itin, V. E. Gyunter, S. A. Shabalovskaya, R. L. C. Sachdev. Mater. Charact. 32, 179 (1994). Crossref
2. R. A. Ayers, S. J. Simske, T. A. Bateman, A. Petkus, R. L. C. Sachdeva, V. E. Gyunter. J Biomed Mater Res. 45 (1), 42 (1999).<42::AID-JBM6>3.0.CO;2-Q. Crossref
3. A. Bansiddhi, T. D. Sargeant, S. I. Stupp, D. C. Dunand. Acta Biomater. 4, 773 (2008). Crossref
4. E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, X. Gao. Mech. Mater. 38 (5-6), 391 (2006). Crossref
5. M. H. Elahinia, M. Hashemi, M. Tabesh. S. B. Bhaduri. Prog. Mater. Sci. 57, 911 (2012). Crossref
6. M. Kaya, N. Orhan, G. Tosun. Curr. Opin. Solid St. M. 14, 21 (2010). Crossref
7. N. Resnina, S. Belyaev, A. Voronkov, R. Badun. Mater. Today: Proc. 4, 4690 (2017). Crossref
8. V. Sepe, F. Auricchio, S. Marfia, E. Sacco. Comput. Mech. 57, 755 (2016). Crossref
9. S. Gur, G. N. Frantziskonis, K. Muralidharan. Comput. Mater. Sci. 152, 28 (2018). Crossref
10. X. Lu, C. Wang, G. Li, Y. Liu, X. Zhu, S. Tu. Int. J. Appl. Mech. 9 (3), 1750038 (2017). Crossref
11. M. Karamooz-Ravari, M. Kadkhodaei, A. Ghaei. J. Mater. Eng. Perform. 24 (10), 4096 (2015). Crossref
12. P. F. Dehaghani, S. H. Ardakani, H. Bayesteh, S. Mohammadi. International Journal of Solids and Structures. 118 - 119, 24 (2017). Crossref
13. B. Y. Li, L. J. Rong, Y. Y. Li, V. E. Gjunter. Acta Mater. 48 (15), 3895 (2000). Crossref
14. N. G. Fomichev, V. E. Gunter, N. V. Kornilov, et al. New technologies in the spine surgery using porous implants with shape memory. Tomsk, STT (2002) 130 p. (in Russian) [Н. Г. Фомичев, В. Э. Гюнтер, Н. В. Корнилов, А. Е. Симонович и др. Новые технологии в хирургии позвоночника с использованием пористых имплантатов с памятью формы. Томск, STT (2002) 130 c.].
15. A. E. Volkov, M. E. Evard, E. N. Iaparova. MATEC Web Conf. 33, 02006 (2015). Crossref
16. A. E. Volkov, M. E. Evard, E. N. Iaparova. Mater. Today: Proc. 4 (3), 4631 (2017). Crossref
17. J. Waimann, K. Hackl, P. Junker. J. Optimiz. Theory App. 184 (1), 98 (2020). Crossref
18. M. Frost, P. Sedlák, L. Kadeřávek, L. Heller, P. Šittner. J. Intell. Mater. Syst. Struct. 27 (14), 1927 (2016). Crossref
19. A. A. Movchan, I. V. Mishustin, S. A. Kazarina. Russ. Metall. 2018 (4), 316 (2018). Crossref
20. G. Scalet, F. Niccoli, C. Garion, P. Chiggiato, C. Maletta, F. Auricchio. Mech. Mater. 136, 103085 (2019). Crossref
21. F. Belyaev, M. Evard, A. Volkov, N. Volkova. Mater. Today: Proc. 2S, 583 (2015). Crossref

Similar papers