Theoretical study of heat transfer processes in Heusler-type magnetic microwires

O.O. Pavlukhina, V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin show affiliations and emails
Received 11 April 2019; Accepted 21 July 2019;
Citation: O.O. Pavlukhina, V.V. Sokolovskiy, V.D. Buchelnikov, M.A. Zagrebin. Theoretical study of heat transfer processes in Heusler-type magnetic microwires. Lett. Mater., 2019, 9(4) 395-399
BibTex   https://doi.org/10.22226/2410-3535-2019-4-395-399

Abstract

In the present work, two types of geometrical arrangement (C-1 and C-2) of Heusler-type Ni45Co5Mn37In13 microwires in a cooling cell are investigated theoretically.In the present work, two types of geometrical arrangement (C-1 and C-2) of Heusler-type Ni45Co5Mn37In13 microwires in a cooling cell are investigated theoretically. The influence of the location of microwires on the course of heat transfer processes was investigated. The diameter of microwires was ranged from 10 to 50 μm, while the length of microwires was fixed to 1 mm. The calculations were carried out for two cells with differently arranged layers of microwires. The volume of the cooling cell and the cell parameters were similar for both cells. To simulate the heat transfer process in a three-dimensional cooling cell with microwires, we considered a mathematical model including the heat conduction and convection mechanisms, as well as the coolant motion. To model heat transfer processes, the system of Navier-Stokes, continuity and thermal conductivity equations is solved by the finite-element method. It is shown that the relaxation time is about 2.4 ms and 2.2 ms for cooling cells C-1 and C-2, which contain microwires with a diameter of 50 μm, and about 0.9 ms and 0.8 ms for cooling cells C-1 and C-2, which contain microwires with a diameter of 10 μm. A lower relaxation time indicates that heat transfer can occur faster in the C-2 cell with the same initial coolant velocity and equal wire thickness. It is also established that the transfer of thermal energy occurs more efficiently and faster in the cell C-2. Our study reveals that the geometrical arrangement of C-2 cell is more optimal.

References (34)

1. А. Kitanovski, W. E. Peter. Int. J. Refrig. 29, 3 (2006). Crossref
2. K. A. Gschneidner, V. K. Pecharsky, A. O. Tsokol. Rep. Prog. Phys. 68, 1479 (2005). Crossref
3. J. Liu, T. Gottschall, K. Skokov, J. Moore, O. Gutfleisch. Nature Mater. 11, 620 (2012). Crossref
4. O. Pavlukhina, V. Buchelnikov, V. Sokolovskiy, M. Zagrebin. Solid State Phenomena. 190, 347 (2012). Crossref
5. R. Das, S. Sarma, A. Perumal, A. Srinivasan. J. Appl. Phys. 109, 07A901 (2011). Crossref
6. O. Pavlukhina, V. Buchelnikov, V. Sokolovskiy. Functional Materials. 19, 97 (2012).
7. O. Pavlukhina, V. Sokolovskiy, V. Buchelnikov. Solid State Phenomena. 233 - 234, 251 (2015). Crossref
8. D. Y. Cong, S. Roth, L. Schultz. Acta Mater. 60, 5335 (2012). Crossref
9. S. Fabbrici et al. Entropy. 16, 2204 (2014). Crossref
10. O. Pavlukhina, V. Buchelnikov, V. Sokolovskiy. Materials Science Forum. 845, 138 (2016). Crossref
11. O. Pavlukhina, V. Buchelnikov, V. Sokolovskiy. MATEC Web of Conferences. 33, 02002 (2015). Crossref
12. C. Felser, A. Hirohata. Heusler Alloys: Properties, Growth, Applications. Springer, Cham (2015) 486 p. Crossref
13. T. Gottschall, K. Skokov, B. Frincu, O. Gutfleisch. Appl. Phys. Lett. 106, 121901 (2015). Crossref
14. A. Tura, A. Rowe. Int. J. Refrig. 34, 628 (2011). Crossref
15. D. S. Arnold, A. Tura, A. Ruebsaat-Trott, A. Rowe. 5th International Conference on Magnetic Refrigeration at Room Temperature. Grenoble, France (2012) p. 309.
16. S. Jacobs, J. Auringer, A. Boeder, et al. 5th International Conference on Magnetic Refrigeration at Room Temperature. Grenoble, France (2012) p. 421.
17. M. Balli, O. Sari, C. Mahmed, et al. Appl. Energy. 98, 556 (2012). Crossref
18. C. R. H. Bahl, D. Velazquez, K. K. Nielsen, et al. Appl. Phys. Lett. 100, 121905 (2012). Crossref
19. P. V. Trevizoli, J. R. Barbosa Jr., R. T. S. Ferreira. Int. J. Refrig. 34, 1518 (2011). Crossref
20. V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, V. Novosad. Phys. Status Solidi B. 251, 2104 (2014). Crossref
21. V. Zhukova, M. Ipatov, A. Granovsky, A. Zhukov. J. Appl. Phys. 115, 17A939 (2014). Crossref
22. A. Sarlah, J. Tusek, A. Poredos. J. Mech. Eng. 58, 16 (2012). Crossref
23. L. Kuhn, N. Pryds, C. Bahl, A. Smith. J. Phys: Conf. Ser. 303, 012082 (2011). Crossref
24. K. Nielsen et al. Int. J. Refrig. 34, 603 (2011). Crossref
25. K. K. Nielsen, C. R. H. Bahl, A. Smith, et al. Int. J. Refrig. 32, 1478 (2009). Crossref
26. K. Engelbrecht, J. Tusek, K. K. Nielsen, et al. J. Phys. D: Appl. Phys. 46, 255002 (2013). Crossref
27. M. Vazquez, H. Chiriac, A. Zhukov, et al. Phys. Status Solidi A. 208, 493 (2011). Crossref
28. M. I. Ilyn, V. Zhukova, J. D. Santos, et al. Phys. Status Solidi A. 205, 1378 (2008). Crossref
29. A. Zhukov, V. Rodionova, M. Ilyn, et al. J. Alloys Compd. 575, 73 (2013). Crossref
30. V. Zhukova, A. M. Aliev, R. Varga, et al. J. Supercond. Nov. Magn. 26, 1415 (2013). Crossref
31. O. Pavlukhina, V. Sokolovskiy, V. Buchelnikov. 7th International Conference on Magnetic Refrigeration at Room Temperature (Thermag VII). Proceedings. Turin, Italy (2016) p 174. Crossref
32. O. Pavlukhina, V. Sokolovskiy, V. Buchelnikov. Phys. Status Solidi A. 213 (2), 390 (2016). Crossref
33. O. C. Zienkiewicz, K. Morgan. Finite Elements and Approximations. John Wiley & Sons, New York (1983) 328 p.
34. O. C. Zienkiewicz, R. L. Taylor. Fluid Dyn. 3, 347 (2000).

Similar papers

Funding

1. Russian Science Foundation - project no. 17‑72‑20022