Complex investigations of phase diagram of Ni-Pt-Mn-Ga Heusler alloys

M. Zagrebin, S. Derevyanko, V. Sokolovskiy, V. Buchelnikov
Received: 16 July 2017; Revised: 29 August 2017; Accepted: 28 September 2017
This paper is written in Russian
Citation: M. Zagrebin, S. Derevyanko, V. Sokolovskiy, V. Buchelnikov. Complex investigations of phase diagram of Ni-Pt-Mn-Ga Heusler alloys. Letters on Materials, 2018, 8(1) 21-26
BibTex   DOI: 10.22226/2410-3535-2018-1-21-26

Abstract

Monte Carlo results of Curie temperatures (TC) and estimated temperatures of the martensitic phase transition (Tm) for Ni2-xPtxMnGa (0 ≤ x ≤ 1,75) alloys as functions of Pt concentration (x)In this paper, structural (lattice parameter, tetragonality distortions) and magnetic (total magnetic moments, magnetic exchange parameters) properties for Ni2-xPtxMnGa shape memory Heusler alloys were studied using density functional theory. It is shown that the equilibrium crystal lattice parameter of the austenite increases with increasing Pt content. The largest tetragonal distortions are observed in the Ni1.0Pt1.0MnGa alloy, in which the c/a ratio reaches 1.32. An investigation of the magnetic exchange parameters shows that the largest contribution to the total exchange energy is associated with interaction between nearest neighboring Ni-Mn atoms. In the martensitic state, the magnetic exchange parameters increase. The concentration dependences of the Curie temperature were calculated by means Monte Carlo method and mean field approximation. It is shown that the Curie temperatures of the austenite calculated using the Monte Carlo simulation and the mean field approximation have similar values, while the Curie temperature in martensite obtained within the mean field approximation is higher than the Curie temperature obtained from the Monte Carlo simulation. The temperatures of the martensitic phase transitions are estimated. It is shown that the temperature of martensitic phase transition increases with increasing of Pt content. Based on these temperatures, a phase diagram for Ni2-xPtxMnGa Heusler alloys For the whole range of Pt concentration (0 ≤ x ≤ 2) is constructed. Comparison of the obtained values and experimental results was conducted. It is shown that the calculated Curie temperatures are in good agreement with the experimental data.

References (16)

1.
A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko. Appl. Phys. Lett. 80, 1746 – 1748 (2002). DOI: 10.1063/1.1458075
2.
K. Ullakko, J. K. Huang, C. Kantner, and R. C. O’Handley, V. V. Kokorin. Appl. Phys. Lett. 69, 1966 – 1968 (1996). DOI: 10.1063/1.117637
3.
S. J. Murray, M. Marioni, S. M. Allen, and R. C. O’Handley, T. A. Lograsso. Appl. Phys. Lett.77, 886 – 888 (2000). DOI: 10.1063/1.1306635
4.
V. D. Buchelnikov, V. V. Sokolovskiy. Phys. Met. Metallogr. 112, 633 – 665 (2011). DOI: 10.1134/S0031918X11070052
5.
J. Pons, E. Cesari, C. Seguí, F. Masdeu, R. Santamarta. Mat. Sci. Eng. A. 481 – 482, 57 – 65 (2008). DOI: j.msea.2007.02.152
6.
S. Singh, S. W. D’Souza, K. Mukherjee, P. Kushwaha, S. R. Barman, S. Agarwal, P. K. Mukhopadhyay, A. Chakrabarti, E. V. Sampathkumaran. Appl. Phys. Lett. 104, 231909 (2014). DOI: 10.1063/1.4883404
7.
P. Entel, M. Siewert, M. E. Gruner, A. Chakrabarti, S. R. Barman, V. V. Sokolovskiy, V. D. Buchelnikov. J. Alloy. Compd. 577, S107‑S112 (2013). DOI: j.jallcom.2012.03.005
8.
S. Singh, S. W. D’Souza, J. Nayak, L. Caron, E. Suard, S. Chadov, C. Felser. Phys. Rev. B. 93, 134102 (2016). DOI: 10.1103/PhysRevB.93.134102
9.
G. Kresse, J. Furthmuller. Phys. Rev. B. 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169
10.
G. Kresse, D. Joubert. Phys. Rev. B. 59, 1758 (1999) DOI: 10.1103/PhysRevB.59.1758
11.
H. Ebert, D. Ködderitzsch, J. Minár. Rep. Prog. Phys. 74, 096501 (2011). DOI: 10.1088/0034-4885/74/9/096501
12.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 18 (1996). DOI: 10.1103/PhysRevLett.77.3865
13.
D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge, Cambridge University Press. (2005) 432 p.
14.
P. J. Webster, K. R. A. Ziebeck, S. L. Town, M. S. Peak. Philos. Mag. B. 49, 295 – 310 (1984). DOI: 10.1080/13642817408246515
15.
V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, P. Entel, S. Sahoo, M. Ogura. Phys. Rev. B. 86, 134418 (2012). DOI: 10.1103/PhysRevB.86.134418
16.
V. A. Chernenko, V. A. L’vov, S. P. Zagorodnyuk, T. Takagi. Phys. Rev. B 67, 064407 (2003). DOI: 10.1103/PhysRevB.67.064407