Interaction of atomic force microscope tip with ripples in graphene nanoribbons

J.A. Baimova, K. Zhou show affiliations and emails
Accepted: 08 November 2012
This paper is written in Russian
Citation: J.A. Baimova, K. Zhou. Interaction of atomic force microscope tip with ripples in graphene nanoribbons. Lett. Mater., 2012, 2(3) 139-142
BibTex   https://doi.org/10.22226/2410-3535-2012-3-139-142

Abstract

Physical properties of graphene nanoribbons can be changed in a controllable way by introducing ripples via application of homogeneous elastic strain. Atomic force microscopy is a popular method used for measuring parameters of ripples in graphene sheets. In this letter, the interaction between atomic force microscope tip and ripples in graphene nanoribbons with clamped edges is investigated. With the help of molecular dynamics simulations, the displacements in graphene nanoribbon as the function of force acting from the tip were calculated for different positions of the tip with respect to the nanoribbons edge.

References

1. A.H. Castro Neto. F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
2. C. Lee, X. Wei, J.W. Kysar, J. Hone. Science. 321, 385 (2008).
3. A.K. Geim, K.S. Novoselov. Nature Materials. 6, 183 (2007).
4. M.B. Belonenko, N.G. Lebedev, N.N. Yanyushkina, M.M.Shakirzyanov. Physics of the Solid State. 52(9), 1952(2010).
5. J.I. Inoue. Phys. Rev. B 83, 205404 (2011).
6. Meyer, J.C. et al. Nature. 446, 60 (2007).
7. U. Bangert, et al. Phys. Status Solidi. A206, 1117 (2009).
8. M. Neek-Amal, F.M. Peeters. Phys. Rev. B82, 085432(2010).
9. Z.F. Wang, Y. Zhang, F. Liu, Phys. Rev. B83, 041403(R)(2011).
10. R. Miranda, A.L. Vazquez de Parga, NatureNanotechnology. 4, 549 (2009).
11. A. Fasolino, J.H. Los, M.I. Katsnelson, Nature Mater. 6, 858 (2007).
12. S.C. Pradhan, T. Murmu, Comput. Mater. Sci. 47, 268(2009).
13. R. Larsson, K. Samadikhah, Comput. Mater. Sci. 50, 1744(2011).
14. S.V. Dmitriev, J.A. Baimova, A.V. Savin, Y.S. Kivshar, Comput. Mater. Sci. 53, 194 (2012).
15. S.V. Dmitriev, Yu.A. Baimova, A.V. Savin, Yu.S. Kivshar, JETP Lett. 93, 571 (2011).
16. Yu.A. Baimova, A.V. Savin. Letters on Materials. 1(3), 171 (2011) (in Russian) [Ю.А. Баимова, А.В. Савин, Письма о материалах 1(3), 171 (2011).
17. J.A. Baimova, S.V. Dmitriev, K. Zhou. Phys. Status SolidiB249, 1393 (2012).
18. J.A. Baimova, S.V. Dmitriev, K. Zhou, A.V. Savin. Phys.Rev. B86, 035427 (2012).
19. H.C. Schniepp et al. ACS Nano. 2(12), 2577, (2008).
20. C. Lee, X. Wei, Q. Li et al. Phys. Status Solidi B246(11-12), 2562 (2009).
21. A.J.M. Giesbersa, U. Zeitlera, S. Neubeck, F. Freitag, K.S.Novoselov, and J.C. Maan, arXiv: 0806.0176.
22. A.V. Savin, Yu.S. Kivshar, B. Hu. Phys. Rev. B82, 195422(2010).
23. A.V. Savin, Yu.S. Kivshar. EPL. 82, 66002 (2008).
24. A.V. Savin, Yu.S. Kivshar. Phys. Rev. B81, 165418 (2010).
25. A.V. Savin. Letters on Materials 1(1), 3 (2011) (in Russian)[А.В. Савин. Письма о материалах 1(1), 3 (2011)].
26. A.M. Krivtsov, N.F. Morozov. Phys. Solid State. 44(12), 2260 (2002).

Cited by (1)

1.
E. A. Korznikova, J. A. Baimova, S. V. Dmitriev. Russ Phys J. 58(6), 808 (2015). Crossref