Structure and electronic properties of graphyne layers modeled on layers of graphene L3-12

V.V. Mavrinskii, E.A. Belenkov
Received: 23 November 2017; Revised: 21 December 2017; Accepted: 29 December 2017
This paper is written in Russian
Citation: V.V. Mavrinskii, E.A. Belenkov. Structure and electronic properties of graphyne layers modeled on layers of graphene L3-12. Letters on Materials, 2018, 8(2) 169-173
BibTex   DOI: 10.22226/2410-3535-2018-2-169-173

Abstract

Formation of new polymorphic structures of graphite layers from L3-12 graphene layersIn this paper, a theoretical study of the structure and electronic properties of new polymorphic conformations of graphyne layers modeled on layers of graphene L3-12 was performed. Graphyne layers have been designed by replacing carbon-carbon bonds between three-coordinated (sp2-hybridized) atoms in the graphene layer of L3-12 with diatomic carbine chains. Geometric optimization and examination of electronic properties of novel graphene architectures were performed within the framework of density functional theory using the gradient approximation. Calculations have shown the possibility of stable existence of three main polymorphic conformations of graphyne layers. The graphyne layers were designed by incorporating a carbine chain into the initial L3-12-graphene layer by following rules: for the γ-L3-12-graphyne layer, one bond of each three-coordinated atom was substituted by a carbine chain, for the β-L3-12-graphyne layer, two bonds of those atoms were replaced, and for α-L3-12-graphyne layers three bonds were replaced. The sublimation energy of the graphyne layers is in the range from 6.52 to 6.61 eV/atom, which is less than the sublimation energy of the original L3-12 graphene layer (6.66 eV/atom) as well as the sublimation energy of hexagonal graphene (7.76 eV/atom). However, the value of the sublimation energy of the graphene layers is in the range of experimentally synthesized carbon materials that are stable under normal conditions. All the graphyne layers studied in this work are semiconductors with the energy gaps widths from 0.18 to 0.91 eV.

References (24)

1.
R. H. Baughman, H. Eckhardt, M. Kertesz. J. Chem. Phys. 87, 6687 (1987). DOI: 10.1063/1.453405
2.
N. Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B. 58, 11009 (1998). DOI: 10.1103/PhysRevB.58.11009
3.
E. A. Belenkov, I. V. Shakhova. Physics of the Solid State. 53(11), 2385 (2011). (in Russian) [Е. А. Беленков, И. В. Шахова. Физика твердого тела. 53(11), 2265 (2011).] DOI: 10.1134/S1063783411110059
4.
B. G. Kim, H. J. Choi. Phys. Rev. B. 86, 115435 (2012). DOI: 10.1103/PhysRevB.86.115435
5.
C.‑W. Kim, S.‑H. Kang, and Y.‑K. Kwon. Phys. Rev. B. 92, 245434 (2015). DOI: 10.1103/PhysRevB.92.245434
6.
P. Zhang, Q. Song, J. Zhuang, X.‑J. Ning. Chem. Phys. Let. 689, 185 (2017). DOI: 10.1016/j.cplett.2017.10.026
7.
J. Qu, H. Zhang, J. Li, S. Zhao, T. Chang. Carbon. 120, 350 (2017). DOI: 10.1016/j.carbon.2017.05.051
8.
G. Li, Y. Li, H. Liu, et al. Chem. Commun. 46, 3256 (2010). DOI: 10.1039/B922733D
9.
В. В. Мавринский, Т. Е. Беленкова, В. М. Чернов, Е. А. Беленков. Вестник Челябинского государственного университета. 316(23), 31 (2013).
10.
E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, V. M. Chernov. J. Exp. Theor. Phys. 120(5), 820 (2015). (in Russian) [Е. А. Беленков, В. В. Мавринский, Т. Е. Беленкова, В. М. Чернов. ЖЭТФ. 120(5), 949 (2015).] DOI: 10.1134/S1063776115040214
11.
Т. Е. Беленкова, В. М. Чернов. Фундаментальные проблемы современного материаловедения. 13(2), 149 (2016).
12.
T. Belenkova, V. Chernov, V. Mavrinskii. Materials Science Forum. 845, 239 (2016). DOI: 10.4028/www.scientific.net/MSF.845.239
13.
E. A. Belenkov, V. A. Greshnyakov. New Carbon Materials. 28(4), 273 (2013). DOI: 10.1016/S1872-5805(13)60081-5
14.
E. A. Belenkov, A. E. Kochengin. Physics of the Solid State. 57(10), 2126 (2015). (in Russian) [Е. А. Беленков, А. Е. Коченгин. Физика твердого тела. 57(10), 2071 (2015).] DOI: 10.1134/S1063783415100030
15.
W. A. Koch, M. C. Holthausen. Chemist’s guide to density functional theory. 2nd edition. Weinheim, Wiley-VCH Verlag GmbH (2001) 293 p.
16.
J. P. Perdew, J. A. Chevary, S. H. Vosko et al. Phys. Rev. B. 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
17.
P. Giannozzi, S. Baroni, N. Bonini et al. J. Phys. Condens. Matter. 21, 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502
18.
E. A. Belenkov. Inorganic Materials. 37(9), 928 (2001). (in Russian) [Е. А. Беленков. Неорганические материалы. 37(9), 1094 (2001).] DOI 10.1023/A:101160191560018
19.
D. S. Lisovenko, J. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, S. V. Dmitriev. Phys. Status Solidi B. 253(7), 1295 (2016). DOI: 10.1002/pssb.201600049
20.
Н. В. Новиков, М. М. Маслов, К. П. Катин, В. С. Прудковский. Письма о материалах. 7(4), 433 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑433‑436
21.
I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Y. A. Baimova, E. A. Korznikova, S. V. Dmitriev. Physics of the Solid State. 58(3), 633 (2016). (in Russian) [И. П. Лобзенко, Г. М. Чечин, Г. С. Безуглова, Ю. А. Баимова, Е. А. Корзникова, С. В. Дмитриев. Физика твердого тела. 58(3), 616 (2016).] DOI: 10.1134/S1063783416030203
22.
Э. И. Беленкова. В книге: Новые технологии в материаловедении. Материалы I научно-практической конференции с международным участием. Уфа, БашГУ (2015) 308 с. Моделирование структурной трансформации углеродных материалов, обусловленное изменением размеров нанокристаллитов. c. 176 – 177.
23.
A. V. Savin, E. A. Korznikova, I. P. Lobzenko, Yu. A. Baimova, S. V. Dmitriev. Physics of the Solid State. 58(6), 1278 (2016). (in Russian) [А. В. Савин, Е. А. Корзникова, И. П. Лобзенко, Ю. А. Баимова, С. В. Дмитриев. Физика твердого тела. 58(6), 1236 (2016).] DOI: 10.1134/S1063783416060317
24.
K. S. Grishakov, K. P. Katin, M. M. Maslov. Advances in Physical Chemistry. 2016, 1862959 (2016). DOI: 10.1155/2016/1862959