Modelling of active transformation of microstructure of two-phase Ti alloys during hot working

O.I. Bylya, B.K. Pradhan, E.B. Yakushina, P.L. Blackwell, R.A. Vasin show affiliations and emails
Received  16 July 2014; Accepted  02 August 2014
Citation: O.I. Bylya, B.K. Pradhan, E.B. Yakushina, P.L. Blackwell, R.A. Vasin. Modelling of active transformation of microstructure of two-phase Ti alloys during hot working. Lett. Mater., 2014, 4(2) 124-129
BibTex   https://doi.org/10.22226/2410-3535-2014-2-124-129

Abstract

Being very strong and brittle, Ti alloys require special techniques to manufacture the parts with complex shapes out of them. Many of these technologies are based on superplastic and near-to-superplastic deforming. In these processes the transformation of microstructure of the material can be very significant and lead to changing the mechanical properties of the material along with deformation. Because of this proper description of the correlation between mechanical loading, changes in microstructure and mechanical behavior of material is required. Phenomenological scalar model with internal variable based on statistical description of microstructure is proposed and used for simulation of the high temperature deformation of Ti-6Al-4V alloy. The problems of obtaining the parameters of the model and sensitivity of the model to the accuracy of this process are discussed.

References (16)

1. O.A. Kajbyshev. Plasticity and superplasticity of metals.M.:Metallurgia. (1975) 280 p.
2. K.A. Padmanabhan, R.A. Vasin and F.U. Enikeev.Superplastic flow: phenomenology and mechanics.Berlin: Springer Verlag. (2001) 430 p.
3. R.A. Vasin, F.U. Enikeev. Introduction in superplasticitymechanics. Ufa: Publishing house «Gilem». (1998) 278 p.
4. A.K. Ghosh. Mater. Sc.Eng. A. 463, 36 (2007).
5. F.U. Enikeev. Mater. Sc.Eng. A. 301, 253 (2001).
6. G.C. Wang, M.W. Fu. J. Mater. Proc. Tech. 192-193, 555(2007).
7. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V. R. K.Prasad. Mater. Sc.Eng. A. 325, 112 (2002).
8. S. Venugopal, P.V. Sivaprasad. Proceedings of theInternational Conference on Recent Advances inMaterial Processing Technology (RAMPT ‘05). NationalEngineering College. Kovilpatti. India. (2005) P.41-56.
9. N. Ridley, P. S. Bate, B. Zhang. Mater. Sc.Eng. A. 463(1-2), 224 (2007).
10. S. S. Bhattacharya, O.I. Bylya, R.A. Vasin andK.A. Padmanabhan. Mechanics of Solids. 44(6), 951(2009).
11. A.K. Ghosh and R.Raj. Acta Metall. 34(3), 447 (1986).
12. S.A. Larin, V.N. Perevezentsev. PMM. 9, 14 (1990).
13. W.B. Lee, H. S. Yang, Y.W. Kim, A.K. Mukheriee. ScriptaMetallurgica et Materialia. 29, 1403 (1993).
14. S. Guillard, M. Thirukkonda, P.K. Chaudhury, in: I., R. Srinivasan, P. Bania, D. Eylon, S.L. Semiatin (Eds.).Advances in the Science and Technology of TitaniumAlloy Processing. TMS. Warrendale. PA. (1997) p. 93.
15. O.I. Bylja, R.A. Vasin, A.V. Muravlev, P.V. Chistjakov, A.G. Ermachenko, M.V. Karavaeva. Scripta Materialia, 36(8), 949 (1997).
16. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V. R. K.Prasad. Mat. Sci. Eng. A. 284(1), 184 (2000).

Cited by (2)

1.
A. Reshetov, O. Bylya, N. Stefani, M. Rosochowska, P. Blackwell. Superalloys 2016, p.531 (2016). Crossref
2.
I. A. Goncharov. Russ. Metall. 2019(10), 948 (2019). Crossref

Similar papers