Characteristics of the mechanical behavior of a near-alpha multilayer laminate under impact loading

A.A. Sarkeeva ORCID logo , A.A. Kruglov show affiliations and emails
Received: 29 October 2023; Revised: 03 December 2023; Accepted: 04 December 2023
Citation: A.A. Sarkeeva, A.A. Kruglov. Characteristics of the mechanical behavior of a near-alpha multilayer laminate under impact loading. Lett. Mater., 2023, 13(4s) 488-492


Structure and the mechanical behavior of a near-alpha multilayer laminate under impact loadingTitanium alloy Ti-6Al-2Zr-1.2Mo-1.3V is widely used in various branches of modern engineering. This alloy is used for the manufacturing of wing skins, hulls and blades of highly loaded gas turbine engines by diffusion bonding (DB). Moreover, DB can be used to easily manufacture multilayer materials and composites. From a mechanical point of view, the considerable interest in multilayer materials is due to the possibility of achieving improved dynamic properties. In addition, the degree of mechanical anisotropy in these materials can be easily controlled. This study presents the results of microstructural investigation, quantitative assessment of impact fracture characteristics and fractographic analysis of a fracture surface of a diffusion bonded multilayer material consisting of thirteen layers of Ti-6Al-2Zr-1.2Mo-1.3V alloy. Diffusion bonding of anisotropic sheets assembled in a package so that the angle between the rolling directions in the neighboring sheets was 90o made it possible to obtain a multilayer material with isotropic mechanical properties. The impact strength of an obtained multilayer material in a crack divider orientation was about 1.6 MJ / m2. A crack propagation energy was approximately 4 times higher than a crack initiation energy. Fracture of this material was accompanied by formation of delamination. A fracture surface had a dimpled ductile character.

References (36)

1. Titanium and Titanium Alloys: Fundamentals and Applications. 1rd edn. (ed. by C. Leyens, M. Peters). Weinheim, Wiley-VCH (2003) 532 p. Crossref
2. J. C. Williams, R. R. Boyer. Metals. 10 (6), 705 (2020). Crossref
3. A. I. Horev. Titan. 2 (21), 26 (2007). (in Russian) [А. И. Хорев. Titan. 2 (21), 26 (2007).].
4. Z. Ding, Z. Jiao. Encyclopedia of Materials: Metals and Alloys. 4, 19 (2022). Crossref
5. R. R. Boyer. Materials Science and Engineering: A. 213 (1-2), 103 (1996). Crossref
6. F. H. Froes. Titanium Alloys: Properties and Applications. In: Encyclopedia of Materials: Science and Technology. Elsevier (2001) pp. 9367-9369. Crossref
7. X. Zhang, Y. Chen, J. Hu. Progress in Aerospace Sciences. 97, 22 (2018). Crossref
8. R. V. Safiullin. Lett. Mater. 2 (1), 36 (2012). (in Russian) [Р.В. Сафиуллин. Письма о материалах. 2 (1), 36 (2012).]. Crossref
9. X. Li, T. Li, D. An, H. Wu, J. Chen, J. Chen. Acta. Metall. Sin. 58 (4), 473 (2022). Crossref
10. W. Beck, L. Duong, H. Rogall. Materialwissenschaft und Werkstofftechnik. 39 (4-5), 293 (2008). Crossref
11. B. Liu, L. Huang, L. Geng, F. Yin. Multiscale Hierarchical Structure and Laminated Strengthening and Toughening Mechanisms. Lamination - Theory and Application. (ed. by C. A. Osheku) IntechOpen (2018). Crossref
12. R. O. Ritchie. Philosophical Transactions of the Royal Society A (Phil. Trans. R. Soc. A). 379 (2203), 20200437 (2021). Crossref
13. A. Rohatgi, D. J. Harach, K. S. Vecchio, K. P. Harvey. Acta. Mater. 51, 2933 (2003). Crossref
14. M. E. Launey, R. O. Ritchie. Advanced Materials. 21 (20), 2103 (2009). Crossref
15. A. A. Sarkeeva, A. A. Kruglov, R. Ya. Lutfullin et al. Composites Part B. 187, 107838 (2020). Crossref
16. A. I. Plokhikh, S. V. Putirskiy, T. Wang. Journal of Physics: Conference Series. 1990 (1), 012005 (2021). Crossref
17. D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, W. H. Hunt. International Materials Reviews. 41 (5), 169 (1996). Crossref
18. A. A. Sarkeeva. Lett. Mater. 11 (4s), 571 (2021). Crossref
19. A. A. Sarkeeva. Lett. Mater. 12 (4s), 499 (2022). Crossref
20. B. X. Liu, L. J. Huang, B. Kaveendran, L. Geng, X. P. Cui, S. L. Wei, F. X. Yin. Composites Part B. 108, 377 (2017). Crossref
21. T. Vigraman. Materials Today: Proceedings. 42 (2), 750 (2021). Crossref
22. A. A. Ganeeva, A. A. Kruglov, R. Ya. Lutfullin. Rev. Adv. Mater. Sci. 25 (2), 136 (2010).
23. A. A. Ganeeva, A. A. Kruglov, R. Ya. Lutfullin. Deformation and fracture of materials. 7, 38 (2011). (in Russian) [А. А. Ганеева, А. А. Круглов, Р. Я. Лутфуллин. Деформация и разрушение материалов. 7, 38 (2011).].
24. C. M. Cepeda-Jiménez, A. Orozco-Caballero, A. A. Sarkeeva, et al. Metallurgical and Materials Transactions A. 44 (10), 4743 (2013). Crossref
25. T. Li, F. Zhou, L. Long, B. Wang, Z. Tang, X. Li. Materials Characterization. 200, 112825 (2023). Crossref
26. A. A. Ganeeva, A. A. Kruglov, Afanasyeva, R. Ya. Lutfullin. Shell manufacturing method. Patent RU № 2380185, 27 January 2010. (in Russian) [А.А. Ганеева, А.А. Круглов, Н.А. Афанасьева, Р.Я. Лутфуллин. Способ изготовления оболочки. Патент РФ № 2380185, 27 января 2010.].
27. A. I. Horev. Svarochnoe proizvodstvo. 10, 11 (2012). (in Russian) [А. И. Хорев. Сварочное производство. 10, 11 (2012).].
28. D. Banabic. Sheet Metal Forming Processes. Springer-Verlag (2010) p. 316. Crossref
29. R. W. Hertzberg, R. P. Vinci, J. L. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials. 6th edn. John Wiley & Sons (2020) 800 p.
30. Georgiev. Impact Crack-Resisting of Metals. Sofia, Bulvest 2000 (2007) 231 p. (in Bulgarian) [М. Георгиев. Пукнатиноустойчивост на металите при ударно натоварване. София, БУЛВЕСТ 2000 (2007) 231 с.].
31. S. V. Skvortsova. Aviation materials and technologies 1, 40 (2007). (in Russian) [С. В. Скворцова. Авиационные материалы и технологии. 1, 40 (2007).].
32. V. A. Khotinov, V. M. Farber, A. N. Morozova. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015). (in Russian) [В. А. Хотинов, В. М. Фарбер, А. Н. Морозова. Diagnostics, Resource and Mechanics of materials and structures. 2, 57 (2015).]. Crossref
33. V. М. Farber, О. V. Selivanova. Classifying the processes of stress relaxation and their manifestation during plastic deformation of metals. Metally. 1, 110 (2001). (in Russian) [В. М. Фарбер, О. В. Селиванова. Металлы. 1, 110 (2001).].
34. Y. O. Kuzminova, O. N. Dubinin, M. O. Gushchina, A. P. Simonov, S. D. Konev, A. A. Sarkeeva, A. P. Zhilyaev, S. A. Evlashin. Materialia. 27, 101684 (2023). Crossref
35. L. R. Botvina. Fracture: kinetics, mechanisms and general laws. Moscow, Nauka (2008) 334 p. (in Russian) [Л. Р. Ботвина Разрушение: кинетика, механизмы, общие закономерности. Москва, Наука (2008) 334 с.].
36. R. W. Cahn, P. Haasen. Physical metallurgy. Moscow, Metallurgy. In 3 vols. Vol. 3 (1987) 664 p. [Р. У. Кан, П. Хаазен. Физическое металловедение: В 3 т. Т. 3. Москва, Металлургия (1987) 664 с.].

Similar papers


1. Institute for Problems of Superplasticity of Metals of the Russian Academy of Sciences - № АААА-А17 117041310221 5