Strength and torsion fracture mechanism of commercially pure titanium with ultrafine-grained structure

G.V. Klevtsov, R.Z. Valiev, N.A. Klevtsova, M.V. Fesenyuk, M.N. Tyurkov, A.V. Polyakov show affiliations and emails
Received 05 April 2021; Accepted 02 June 2021;
This paper is written in Russian
Citation: G.V. Klevtsov, R.Z. Valiev, N.A. Klevtsova, M.V. Fesenyuk, M.N. Tyurkov, A.V. Polyakov. Strength and torsion fracture mechanism of commercially pure titanium with ultrafine-grained structure. Lett. Mater., 2021, 11(3) 273-278
BibTex   https://doi.org/10.22226/2410-3535-2021-3-273-278

Abstract

Diagrams «torque - twist angle» during torsion testing of samples of hot-rolled coarse-grained (1) and ultrafine-grained (2, 3) titanium Grade4 after ECAP conforms (2) and ECAP conforms + drawing (3)The mechanical behavior and the mechanism of torsional fracture of medical grade titanium Grade4 with an ultrafine-grained (UFG) structure in comparison with a coarse-grained (CG) structure were investigated. CG titanium (dav = 25 μm) was investigated in the hot-rolled state. To obtain the UFG structure, two processing regimes were used. In the first regime, homogenization annealing was carried out at a temperature of 680°C for 1 hour, then equal-channel angular pressing (6 passes) according to the “Conform” scheme (ECAP-С) at a workpiece and tool temperature of 250°C (route Bc, φ =120°). The average grain size is equal to 0.4 μm. In the second regime, after homogenization annealing and six ECAP-C passes, the workpieces were drawn at a temperature of 200°C (ECAP-C+D). The average grain size is equal to 0.2 μm. The torsion test of samples with a diameter of 3 mm (close to the diameter of screws for fixing plates in traumatology) was carried out on a KTS 403‑20‑0.5 installation in accordance with GOST 3565-80. The torque, number of revolutions and angle of twisting of the samples made from CG and UFG titanium, as well as the mechanical properties of titanium during torsion were evaluated. Torsion tests have shown that the torsional strength and the torsional yield strength of UFG titanium increase, and the relative shear decreases in comparison with similar properties of CG titanium. In addition, the mode of nanostructuring (ECAP-C+D) provides higher values of the torsional strength properties of titanium compared to ECAP-C, which is favorable from the standpoint of resistance to fracture of titanium screws by torsion. On the surface of the fractures, there are three regions differing in microrelief: the central part of the fracture, the middle (transitional) and the peripheral parts. In the central part of the fractures, the microrelief consists of equiaxed dimples and structureless areas. In the middle part, shear dimples dominate, and in the peripheral part of fractures, areas of shear dimples alternate with areas of the rubbed surface.

References (20)

1. I. P. Semenova, G. V. Klevtsov, N. A. Klevtsova, G. S. Dyakonov, A. A. Matchin, R. Z. Valiev. Advanced Engineering Materialsю. 18 (7), 1216 (2016). Crossref
2. A. V. Popkov. The Genius of Orthopedics. 3, 94 (2014). (in Russian) [А. В. Попков. Гений Ортопедии. 3, 94 (2014).].
3. T. Fujishiro, D. J. Moojen, N. Kobayashi, W. J. Dhert, T. W. Bauer. Clinical Orthopedics and Related Research. 469 (4), 1127 (2011). Crossref
4. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. Hoboken, New Jersey, John Wiley & Sons (2014) 440 р. Crossref
5. R. Z. Valiev. Russian Nanotechnology. 1 (1-2), 208 (2006). (in Russian) [Р. З. Валиев. Российские Нанотехнологии. 1 (1-2), 208 (2006).].
6. G. V. Klevtsov, E. V. Bobruk, I. P. Semenova, N. A. Klevtsova, R. Z. Valiev. Strength and fracture mechanisms of bulk nanostructured metallic materials. Ufa, UGATU (2016) 240 p. (in Russian) [Г. В. Клевцов, Е. В. Бобрук, И. П. Семенова, Н. А. Клевцова, Р. З. Валиев. Прочность и механизмы разрушения объемных наноструктурированных металлических материалов. Уфа, УГАТУ (2016) 240 с.].
7. I. A. Ovid’ko, R. Z. Valiev, Y. T. Zhu. Progress in Materials Science. 94, 462 (2018). Crossref
8. R. K. Islamgaliev, M. A. Nikitina, A. V. Ganeev, V. D. Sitdikov. Materials Science and Engineering A. 744, 163 (2019). Crossref
9. J. Stráský, M. Janeček, I. Semenova, J. Čížek, K. Bartha, P. Harcuba, V. V. Polyakova, S. Gatina. Titanium in Medical and Dental Applications. 2018, 455 (2018). Crossref
10. D. V. Gunderov, A. V. Polyakov, I. P. Semenova, G. I. Raab, A. A. Churakova, E. I. Gimaltdinova, I. Sabirov, J. Segurado, V. D. Sitdikov, I. V. Alexandrov, N. A. Enikeev, R. Z. Valiev. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 562, 128 (2013). Crossref
11. I. P. Semenova, A. V. Polyakov, G. I. Raab, T. C. Lowe, R. Z. Valiev. Journal of Materials Science. 47, 7777 (2012). Crossref
12. V. V. Polyakova, I. P. Semenova, A. V. Polyakov, D. K. Magomedova, Y. Huang, T. G. Langdon. Materials Letters. 190, 256 (2017). Crossref
13. A. V. Polyakov, I. P. Semenova, E. Ivanov, R. Z. Valiev. Materials Science and Engineering. 461, 012077 (2018). Crossref
14. I. P. Semenova, A. V. Polyakov, V. V. Polyakova, Y. F. Grishina, Y. Huang, R. Z. Valiev, T. G. Langdon. Materials Science and Engineering: A. 696, 166 (2017). Crossref
15. R. Z. Valiev, E. V. Parfenov, L. V. Parfenova. Materials Transactions. 60 (7), 356 (2019). Crossref
16. L. L. Meisner, M. V. Kotenko, A. B. Mamytova, P. V. Zaritsky, V. T. Egorov. Siberian Medical Journal. 8, 13 (2009). (in Russian) [Л. Л. Мейснер, М. В. Котенко, А. Б. Мамытова, П. В. Зарицкий, В. Т. Егоров. Сибирский медицинский журнал. 8, 13 (2009).].
17. S. N. Meisner, M. V. Kotenko, V. A. Kopysova, A. I. Yaremenko, I. K. Ratkin. Zabaikalsky Medical Bulletin. 1, 59 (2016). (in Russian) [С. Н. Мейснер, М. В. Котенко, В. А. Копысова, А. И. Яременко, И. К. Раткин. Забайкальский медицинский вестник. 1, 59 (2016).].
18. A. B. Imanaliev, A. A. Imanaliev, A. S. Ayatov. Traumatology and orthopedics. 3 - 4, 82 (2014). (in Russian) [А. Б. Иманалиев, А. А. Иманалиев, А. С. Аятов. Травматология жǝне ортопедия. 3 - 4, 82 (2014).].
19. A. V. Bondarenko, E. A. Raspopova, V. A. Peleganchuk. Bulletin of Traumatology and Orthopedics n. a. N. N. Priorov. 2, 41 (2004). (in Russian) [Бондаренко, А. В., Распопова Е. А., Пелеганчук В. А. Вестник травматологии и ортопедии им. Н. Н. Приорова. 2, 41 (2004).]. Crossref
20. V. S. Zolotorevskiy. Mechanical properties of metals. Moscow, MISIS (1998) 400 p. (in Russian) [В. С. Золоторевский. Механические свойства металлов. Москва, МИСИС (1998) 400 с.].

Similar papers

Funding

1. Russian Science Foundation - interdisciplinary projects: 20-69-47059 and partially 20-63-47027