Gradient dislocation substructures at fracture of polycrystalline Cu-Mn alloys

N.A. Koneva, L.I. Trishkina, T.V. Cherkasova show affiliations and emails
Received 10 July 2018; Accepted 12 October 2018;
Citation: N.A. Koneva, L.I. Trishkina, T.V. Cherkasova. Gradient dislocation substructures at fracture of polycrystalline Cu-Mn alloys. Lett. Mater., 2018, 8(4) 435-439
BibTex   https://doi.org/10.22226/2410-3535-2018-4-435-439

Abstract

Dependences between dislocation substructures parameters in Cu+0.4аt.%Mn alloy and fracture point Х: 1 – density of broken sub-boundaries Мbs; 2 – density of microbands Nmb, 3 – density of microcracks РcrThe paper presents the TEM investigations of the defect substructure of alloys and its modification with increasing distance from the fracture area. Cu-Mn polycrystalline FCC solid solutions are investigated in this study. The Mn content is 0.4 and 25аt.% and the average grain size is 100m. The test machine INSTRON is used in this experiment to measure tensile and flexural strengths at a room temperature and 2•10-2s-1 deformation rate. Within the fractured areas of specimens, localized deformation is measured each 2•10-3m, as well as the types of the dislocation substructure (DSS) and their various parameters. As a result of this experiment, we establish the substructural sequence in alloys with increasing distance from the point of fracture. In Cu+0.4at.% Mn alloy the following substructural sequence is observed: micro-band, misoriented cellular, non-misoriented cellular, dislocation tangles. Substructural changes in Cu+25at.% Mn alloy occur with increasing distance from the fracture point and include micro-band, cell-network with and without misorientations, dislocation pile-ups, and dislocation chaosic . In both alloys, the broken sub-bondaries are characterized by the high density at the fracture point. It is observed that substructures change gradually, depending on the distance to the fracture point. As a result of this experiment, we detect substructures which condition the alloy fracture at a meso-scale level. Nearby the fracture area, deformation boundaries are misoriented and characterized by the large bending-torsion amplitude of the crystal lattice. Misoriented cellular and micro-band DSS are observed within the fracture area of Cu+0.4at.%Mn alloy. And in Cu+25at.%Mn alloy, the formation of misoriented cell-network DSS and micro-band DSS is observed. Microcracks appear both along the boundaries of misoriented substructures and grain boundaries.

References (21)

1. V. V. Rybin. Large Plastic Deformations and Fracture of Metals. Metallurgia, Moscow (1986). 224 p. (in Russian) [В. В. Рыбин. Большие пластические деформации и разрушение металлов. Металлургия, Москва (1986) 224 с.].
2. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovski et al. Deformation Hardening and Fracture of Polycrystalline Materials. Naukova Dumka, Kiev (1989) 256 p. (in Russian) [В. И. Трефилов, В. Ф. Моисеев, Э. П. Печковский и др. Деформационное упрочнение и разрушение поликристаллических материалов. Наукова думка, Киев (1989) 256 с.].
3. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, E. V. Kozlov. In: Theoretical and Experimental Study of Disclinations (Ed. V. I. Vladimirov). A. F. Ioffe Physico-Technical Institute, Leningrad (1986) P. 116 - 126. (in Russian) [Н. А. Конева, Д. В. Лычагин, Л. А. Теплякова, Э. В. Козлов. В кн.: Теоретическое и экспериментальное исследование дисклинаций (Под ред. В. И. Владимирова). ФТИ им. А. Ф. Иоффе, Ленинград (1986) С. 116 - 126.].
4. N. A. Koneva, E. V. Kozlov. Structural Levels of Plastic Deformation and Fracture (Ed. V. E. Panin). Nauka, Novosibirsk (1990) P. 123 - 186. (in Russian) [Н. А. Конева, Э. В. Козлов. В кн.: Структурные уровни пластической деформации и разрушения (Под ред. акад. В. Е. Панина). Наука, Новосибирск (1990) С. 123 - 186.].
5. E. V. Kozlov, N. A. Koneva, L. I. Trishkina. In: Disclinations and Rotation Deformation of Solids (Eds. A. E. Romanov). A. F. Ioffe Physico-Technical Institute, Leningrad (1990) P. 89 - 125. (in Russian) [Э. В. Козлов, Н. А. Конева, Л. И. Тришкина. В кн.: Дислокации и ротационная деформация твердых тел (Под ред. А. Е. Романова). ФТИ им. А. Ф. Иоффе, Ленинград (1990) С. 89 - 125.].
6. D. Kuhlmann-Wilsdorf. Phil. Mag. A. 79(4), 955 (1999).
7. E. Nes. Progr. Mater. Sci. 41, 129 (1998).
8. N. A. Koneva, E. V. Kozlov, L. I. Trishkina. Metallofizika. 13(10), 49 (1991). (in Russian) [Н. А. Конева, Э. В. Козлов, Л. И. Тришкина. Металлофизика. 13(10). 49 (1991).].
9. V. E. Panin, A. V. Panin, T. Ph. Elsukova, Yu. Ph. Popkova. Physical Mesomechanics. 18(2), 89 (2015).
10. S. A. Saltykov. Stereometric Metallography. Metallurgia, Moscow (1970) 376 p. (in Russian) [С. А. Салтыков. Стереометрическая металлография. Москва, Металлургия (1970) 376 с.].
11. N. A. Koneva, S. F. Kiseleva, N. A. Popova, E. V. Kozlov. Fundamental’nye Problemy Sovremennogo Materialovedeniya 3, 34 (2011). (in Russian) [Н. А. Конева, С. Ф. Киселева, Н. А. Попова, Э. В. Козлов. Фундаментальные проблемы современного материаловедения. 3, 34 (2011).].
12. A. N. Tumentsev, I. A. Ditenberg, A. D. Korotaev, K. I. Denisov. Physical Mesomechanics. 16(4), 319 (2013).
13. M. A. Shtremel. Strength of Alloys. Lattice Defects. Metallurgia, Moscow (1982) 280 p. (in Russian) [М. А. Штремель. Прочность сплавов. Дефекты решетки. Москва, Металлургия (1982) 280 с.].
14. N. A. Koneva, S. F. Kiseleva, N. A. Popova. Structural Evolution and Internal Stress Fields. Lambert Academic Publishing, Saarbrucken (2017) 148 p.
15. N. A. Koneva, L. I. Trishkina, D. V. Lychagin, E. V. Kozlov. New Methods in Physics and Mechanics of Deforming Solids. Part I. (Ed. V. E. Panin). Tomsk State University, Tomsk (1990) P. 83 - 93. (in Russian) [Н. А. Конева, Л. И. Тришкина, Д. В. Лычагин, Э. В. Козлов. Новые методы в физике и механике деформируемого твердого тела. Ч.1. Под ред. акад. В. Е. Панина. Томск, ТГУ (1990) с. 83 - 93.].
16. M. Calcaynotto, D. Ponge, E. Demir, D. Raabe. Mater. Sci. Eng. A. 527, 2738 (2010).
17. A. Kundu, D. P. Field. Mater. Sci. Eng. A. 667, 435 (2016).
18. V. N. Perevezentsev, V. V. Rybin. Structure and Properties of Grain Boundaries. Niznii Novgorod University, Niznii Novgorod (2012) 307 p. (in Russian) [В. Н. Перевезенцев, В. В. Рыбин. Структура и свойства границ зерен. Нижний Новгород, Изд-во Нижегородского госуниверситета (2012) 307 с.].
19. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, T. V. Cherkasova. Fundamental’nye Problemy Sovremennogo Materialovedeniya 13(2), 162 (2016). (in Russian) [Н. А. Конева, Э. В. Козлов, Л. И. Тришкина, Т. В. Черкасова. Фундаментальные проблемы современного материаловедения. 13(2), 162 (2016).].
20. E. V. Kozlov, N. A. Koneva, L. I. Trishkina. Crystallografia 54(6), 981 (2009). (in Russian) [Э. В. Козлов, Н. А. Конева, Л. И. Тришкина. Кристаллография. 54(6), 981 (2009).].
21. N. A. Koneva, L. I. Trishkina, T. V. Cherkasova. Letters on Materials 7(3), 282 - 286 (2017). (in Russian) [Н. А. Конева, Л. И. Тришкина, Т. В. Черкасова. Письма о материалах. 7(3), 282 - 286 (2017).].

Cited by (2)

1.
D. Romanov, S. Moskovskii, S. Konovalov, K. Sosnin, V. Gromov, Y. Ivanov. Journal of Materials Research and Technology. 8(6), 5515 (2019). Crossref
2.
S. V. Kirikov, V. N. Perevezentsev, A. S. Pupynin. Fizika metallov i metallovedenie. 124(8), 763 (2023). Crossref

Similar papers