Prediction of the fatigue life of VT1-0 titanium in various structural states under very high cycle fatigue

D.R. Ledon, M.V. Bannikov, V.A. Oborin, Y.V. Bayandin, O.B. Naimark show affiliations and emails
Received: 27 July 2021; Revised: 13 September 2021; Accepted: 23 September 2021
Citation: D.R. Ledon, M.V. Bannikov, V.A. Oborin, Y.V. Bayandin, O.B. Naimark. Prediction of the fatigue life of VT1-0 titanium in various structural states under very high cycle fatigue. Lett. Mater., 2021, 11(4) 422-426


Modeling the growth of a crack originating in the sample volumeThe paper presents an experimental methodology for assessing the ultra-high-cycle resource as applied to titanium VT1-0 in the submicrocrystalline and nanostructured states. The program for testing very-high-cycle loading (number of cycles 107 –109) has been experimentally implemented. An “in situ” technique for determining the accumulation of irreversible fatigue damage was used. This technique is based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue unit. This makes it possible to establish a connection between microscopic mechanisms of fatigue and model concepts and to consider the stages of damage development based on the nonlinear kinetics of defect accumulation during cyclic loading in the regimes of high- and very-high-cycle fatigue. A mathematical model of a deformable solid based on wide-range constitutive relations of the statistical theory of defects is presented. The proposed model contains a structural scaling parameter that allows one to describe the deformation behavior and fracture of the material under study in various structural states. The effect of damage accumulation under gigacycle loading is described. Numerical calculations predict well the experimental Wöhler curves. In an axisymmetric formulation, a boundary value problem is solved — the process of emergence of a crack originating inside the material is modeled.

References (26)

1. С. Bathias, P. Paris. Int. J. Fatigue. 32 (6), 894 (2010). Crossref
2. Z. Huang, D. Wagner, C. Bathias, P. C. Paris. Acta Mater. 58 (18), 6046 (2010). Crossref
3. M. A. Meyers, A. Mishra, D. J. Benson. Progress in materials science. 51 (4), 427 (2006). Crossref
4. I. A. Ovid’ko, R. Z. Valiev, Y. T. Zhu. Progress in materials science. 94, 462 (2018). Crossref
5. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, O. N. Lykova, N. V. Varlamova. Journal of Materials Science. 52 (8), 4164 (2017). Crossref
6. E. Naydenkin, G. Grabovetskaya, K. Ivanov. Materials Science Forum. 683, 69 (2011). Crossref
7. A. Vinogradov, S. Hashimoto. Materials Transactions. 42 (1), 74 (2001). Crossref
8. H. W. Höppel. Materials Science Forum. 503 - 504, 259 (2006). Crossref
9. V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, D. V. Prosvirin, S. O. Rogachev, I. O. Bannykh. Russian Metallurgy. 2011, 981 (2011). Crossref
10. H. Mughrabi. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2038), 20140132 (2015). Crossref
11. T. Sakai. Jour. Solid Mech. and Mat. Eng. 3 (3), 425 (2009). Crossref
12. Y.-D. Li, L.-L. Zhang, Y.-H. Fei, X.-Y. Liu, M.-X. Li. Int. J. Fatigue. 82 (3), 402 (2016). Crossref
13. J. H. Cantrell, W. T. Yost. Int. J. Fatigue. 23 (1), 487 (2001). Crossref
14. A. Kumar, C. J. Torbet, T. M. Pollock, J. J. Wayne. Acta Mater. 58 (6), 2143 (2010). Crossref
15. A. Kumar, R. R. Adharapurapu, J. W. Jones, T. M. Pollock. Scr. Mater. 64 (1), 65 (2011). Crossref
16. A. Demčenko, R. Akkerman, P. B. Nagy, R. Loendersloot. NDT & E International. 49, 34 (2012). Crossref
17. Y. Yang, C. T. Ng, A. Kotousov, H. Sohn, H. J. Lim. Mechanical Systems and Signal Processing. 99 (1), 760 (2018). Crossref
18. J. Kober, Z. Prevorovsky. NDT & E International. 61 (1), 10 (2014). Crossref
19. Z. Su, C. Zhou, M. Hong, L. Cheng, Q. Wang, X. Qing. Mechanical Systems and Signal Processing. 45 (1), 225 (2014). Crossref
20. P. Liu, H. Sohn, T. Kundu, S. Yang. NDT & E International. 66, 106 (2014). Crossref
21. Yu. R. Kolobov. Nanotechnologies in Russia. 4 (11-12), 758 (2009). Crossref
22. S. S. Manokhin, A. Y. Tokmacheva-Kolobova, Y. Y. Karlagina, V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova, Y. R. Kolobov. Journal of Surface Investigation. 15 (1), 59 (2021). Crossref
23. M. V. Narykova, A. G. Kadomtsev, V. I. Betekhtin, Yu. R. Kolobov, S. S. Manohin, A. Yu. Tokmacheva. Journal of Physics: Conference Series. 1697 (1), 012113 (2020). Crossref
24. B. K. Kardashev, M. V. Narykova, V. I. Betekhtin, A. G. Kadomtsev. Physical Mesomechanics. 23 (3), 193 (2020). Crossref
25. O. B. Naimark. Physical mesomechanics. 6 (4), 39 (2003).
26. D. A. Bilalov, V. A. Oborin, O. B. Naimark, M. V. Narykova, A. G. Kadomtsev, V. I. Betekhtin. Technical Physics Letters. 46 (4), 397 (2020). Crossref

Similar papers


1. Russian Science Foundation - 19-12-00221