Effect of carbon alloying on hydrogen embrittlement of a Cantor alloy

M.Y. Panchenko ORCID logo , E.V. Melnikov ORCID logo , D.Y. Gurtova, E.G. Astafurova show affiliations and emails
Received 18 July 2022; Accepted 13 September 2022;
Citation: M.Y. Panchenko, E.V. Melnikov, D.Y. Gurtova, E.G. Astafurova. Effect of carbon alloying on hydrogen embrittlement of a Cantor alloy. Lett. Mater., 2022, 12(4) 282-286
BibTex   https://doi.org/10.22226/2410-3535-2022-4-282-286

Abstract

The effect of carbon-alloying (1 at.%) on the hydrogen embrittlement susceptibility of equiatomic high-entropy alloy FeNiCoCrMn has been studied. The carbon-alloyed alloy has higher resistance to hydrogen embrittlement compared to the interstitial-free Cantor alloy.We have investigated the effect of hydrogen-charging on the mechanical properties and fracture mechanisms of high-entropy alloys Fe20Mn20Cr20Ni20Co20 and Fe20Mn20Cr20Ni20Co19C1 (at.%). Both alloys have a coarse-grained single-phase face-centered cubic (fcc) structure. It was found that doping with carbon decreases the content of hydrogen absorbed by the specimens during electrochemical hydrogen-charging (in a 3 % NaCl water solution, at j =10 mA / cm2 for 50 h): 134 wppm and 63 wppm for carbon-free and carbon-doped alloy, respectively. Hydrogen-charging contributes to an increase in the yield strength and a decrease in the ductility of the alloys. Despite the lower concentration of dissolved hydrogen, the hydrogen-associated solid-solution strengthening of the carbon-doped alloy is higher than that in the interstitial-free alloy. The hydrogen embrittlement index, IH =17 %, for carbon-alloyed specimens is lower than IH = 25 % for interstitial-free specimens. In both alloys, the hydrogen-affected surface layers of the specimens fracture in a similar brittle mode — intergranular fracture dominates.

References (31)

1. P. Gong, J. Nutter, P. E. J. Rivera-Diaz-Del-Castillo, W. M. Rainforth. Sci. Adv. 6, 6152 (2020). Crossref
2. Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu. J. Mater. Sci. Technol. 35, 369 (2019). Crossref
3. Z. Wu, C. M. Parish, H. Bei. J. Alloys Compd. 647, 815 (2015). Crossref
4. F. Otto, A. Dloughy, Ch. Somsen, H. Bei, G. Eggeler, E. P. George. Acta. Mater. 61, 5743 (2013). Crossref
5. A. Gali, E. P. George. Intermetallics. 39, 74 (2013). Crossref
6. Y. Zhao, D.-H. Lee, M.-Y. Seok, J.-A. Lee, M. P. Phaniraj, J.-Y. Suh, H.-Y. Ha, J.-Y. Kim, U. Ramamurty, J.-i. Jang. Scr. Mater. 135, 54 (2017). Crossref
7. H. Luo, Z. Li, D. Raabe. Sci. Rep. 7, 9892 (2017). Crossref
8. K. Bertsch, K. Nygren, S. Wang, H. Bei, A. Nagao. Corros. Sci. 184, 109407 (2021). Crossref
9. M. Koyama, K. Ichii, K. Tsuzaki. Int. J. Hydrogen Energy. 44, 17163 (2019). Crossref
10. E. Astafurova, M. Panchenko, K. Reunova, A. Mikhno, V. Moskvina, E. Melnikov, S. Astafurov, H. Maier. Scripta Mater. 194, 113642 (2021). Crossref
11. J. Y. Ko, S. I. Hong. J. Alloys Compd. 743, 115 (2018). Crossref
12. E. V. Melnikov, S. V. Astafurov, K. A. Reunova, V. A. Moskvina, I. A. Tumbusova, M. Yu. Panchenko, E. G. Astafurova. Letters on Materials. 11 (4), 375 (2021). (in Russian) [Е. В. Мельников, С. В. Астафуров, К. А. Реунова, В. А. Москвина, М. Ю. Панченко, И. А. Тумбусова, Е. Г. Астафурова. Письма о материалах. 11 (4), 375 (2021).]. Crossref
13. E. G. Astafurova, E. V. Melnikov, K. A. Reunova. Phys. Mesomech. 24, 674 (2021). Crossref
14. H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe. Corros. Sci. 136, 403 (2018). Crossref
15. H. Luo, Z. Pan, X. Wang, H. Cheng, A. A. Nazarov, X. Li. Corros. Sci. 203, 110357 (2022). Crossref
16. Z. Fu, P. Wu, S. Zhu, K. Gan, D. Yan, Z. Li. Corros. Sci. 194, 109933 (2022). Crossref
17. E. G. Astafurova, E. V. Melnikov, S. V. Astafurov, K. A. Reunova, M. Yu. Panchenko, V. A. Moskvina, I. Tumbusova. Mater. Lett. 285, 129073 (2021). Crossref
18. R. Oriani. Acta Metall. 18, 147 (1970). Crossref
19. S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate. Scripta Mater. 65, 859 (2011). Crossref
20. Y. Bai, Y. Momotani, M. C. Chen, A. Shibata, N. Tsuji. Mater. Sci. Eng., A. 651, 935 (2016). Crossref
21. C. Park, N. Kang, S. Liu. Corros. Sci. 128, 33 (2017). Crossref
22. R. K. Dayal, H. J. Grabke. Mater. Technol. 71, 255 (2000). Crossref
23. V. G. Gavriljuk, A. L. Sozinov, A. G. Balanyuk, S. V. Grigoriev, O. A. Gubin, G. P. Kopitsa, V. V. Runov. Metal. Mater. Trans. A. 28 (11), 2195 (1997). Crossref
24. Y. Han, H. Li, H. Feng, K. Li, Y. Tian, Z. Jiang. J. Mater. Sci. Technol. 65, 210 (2021). Crossref
25. M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, G. Salishchev, N. Stepanov. J. Alloys Compd. 849, 156633 (2020). Crossref
26. I. M. Robertson. Eng. Fract. Mech. 68, 671 (2001). Crossref
27. A. E. Pontini, J. D. Hermida. Scripta Mater. 37 (11), 1831 (1997). Crossref
28. M. L. Martin, J. A. Fenske, G. S. Liu, P. Sofronis, I. M. Robertson. Acta Mater. 59, 1601 (2011). Crossref
29. T. Neeraj, R. Srinivasan, J. Li. Acta Mater. 60, 5160 (2012). Crossref
30. Z. Li, C. C. Tasan, H. Springer, B. Gault, D. Raabe. Sci. Rep. 7, 40704 (2017). Crossref
31. R. E. Schramm, R. P. Reed. Metallurgical Transactions A. 6A, 1345 (1975). Crossref

Similar papers

Funding

1. Russian Science Foundation - 20-19-00261