The mechanism of formation of surface micro- and nanostructures in the AlCoCrFeNi high-entropy alloy during electron-beam treatment

S.A. Nevskii, S.V. Konovalov, K.A. Osintsev, Y.F. Ivanov, A.Y. Granovskii, V.E. Gromov show affiliations and emails
Received 26 April 2021; Accepted 09 June 2021;
Citation: S.A. Nevskii, S.V. Konovalov, K.A. Osintsev, Y.F. Ivanov, A.Y. Granovskii, V.E. Gromov. The mechanism of formation of surface micro- and nanostructures in the AlCoCrFeNi high-entropy alloy during electron-beam treatment. Lett. Mater., 2021, 11(3) 309-314
BibTex   https://doi.org/10.22226/2410-3535-2021-3-309-314

Abstract

Structure of the high-entropy alloy irradiated by an electron beam with the energy density of 30 J/cm2. Temperature distribution on time throughout the depth for the energy density Es = 30 J/cm2.The paper is devoted to a study of the formation of submicron and nanosized cellular crystallization structures on the surface of a high-entropy AlCoCrFeNi alloy irradiated by high current electron beams with the energy density varying from 10 to 30 J / cm2 and a pulse time of 200 μs. The study revealed that the combination of thermal, evaporation-capillary and thermoelectric instabilities induces the formation of submicro- and nanodimensional cellular structures similarly to high-entropy alloys. The proposed dispersion equation was analyzed to detect the conditions for the generation of this instability. The importance of the evaporation process was investigated by finding a solution to the heat problem with phase transformations. The temperature distribution over time calculated at different distances from the surface of the alloy samples demonstrated that the surface temperature is lower than the evaporation temperature for the energy density Es < 30 J / cm2, therefore, the term of evaporation in the dispersion equation was ignored for these values of the energy density. The analysis of the dispersion equation showed that for Es = 30 J / cm2, the wavelength λm with the maximal growth rate of perturbations on the melt surface gains a value in the submicro-and nano-range, provided that the thermoelectric coefficient equals to ~4 –10 V / K, and the pressure of evaporation is ~105 Pa. If we exclude thermoelectric effects, these values λm are observed for the pressure of evaporation ~1011 Pa. The wavelength λm was revealed to decrease according to a power law as the beam energy density increases.

References (20)

1. P. Lyu, Y. Chen, Z. Liu, J. Cai, C. Zhang, Y. Jin, Q. Guan, N. Zhao. Appl. Surf. Sci. 504, 144453 (2020). Crossref
2. P. Lyu, T. Peng, Y. Miao, Z. Liu, Q. Gao, C. Zhang, Y. Jin, Q. Guan, J. Cai. Surf. & Coat. Tech. 410, 126911 (2021). Crossref
3. V. V. Popov, A. Katz-Demyanetz, A. Koptyug. Heliyon. 5 (2), e01188 (2019). Crossref
4. K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba. Add. Manufactur. 23, 264 (2018). Crossref
5. A. Munitz, S. Salhov, S. Hayun, N. Frage. J. of Alloys and Compounds. 683, 221 (2016). Crossref
6. S. Li, J. S. Lowengrub, P. H. Leo, V. Cristini. J. Crys. Growth. 277, 578 (2005). Crossref
7. H. Liu, Z. Zeng, L. Yin, Z. Qiu, L. Qiao. Inter. Comm. in Heat and Mass Transf. 121, 105099 (2021). Crossref
8. L. A. Dávalos-Orozco. Inter. J. of Non-Linear Mech. 109, 15 (2019). Crossref
9. L. A. Bulavin, V. I. Tkachenko. Ukr. J. Phys. 63, 747 (2018). Crossref
10. W. Sun, J. Y. Zhong, S. Zhang, B. W. Tong et al. High Energ. Density Phys. 31, 47 (2019). Crossref
11. V. Sarychev, S. Nevskii, S. Konovalov, A. Granovskii, V. Gromov. Mater. Res. Expr. 6 (7), 076551 (2019). Crossref
12. S. Nevskii, V. Sarychev, S. Konovalov, A. Granovskii, V. Gromov. Metals. 10, 1399 (2020). Crossref
13. E. D. Eidelman. Phys.-Uspekhi. 38, 1231 (1995). Crossref
14. E. D. Eidelman. Tech. Phys. 43, 1275 (2008). Crossref
15. R. V. Arutyunyan, V. Yu. Baranov, L. A. Bol’shov et al. Effects of laser radiation on materials. Moscow, Nauka (1989) 367 p. (in Russian) [Р. В. Арутюнян, В. Ю. Баранов, Л. В. Большов и др. Москва, Наука (1989) 367 с.].
16. V. Sarychev, S. Nevskii, S. Konovalov, A. Granovskii, Y. Ivanov, V. Gromov. Mater. Res. Expr. 6 (2), 026540 (2019). Crossref
17. S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, N. Uporova. Intermetallics. 83, 777 (2019). Crossref
18. S. Rohila, R. B. Mane, G. Ummethala, B. B. Panigrahi. J. Mater. Res. 34, 1 (2017). Crossref
19. Critical Melting Points and Reference Data for Vacuum Heat Treating (Ed. by V. Osterman, H. Antes Jr.) Fontana, Solar Atmosphere (2010) 42 p.
20. V. I. Nizhenko, L. I. Floka. Surface tension of liquid metals. Moscow, Metallurgiya (1981) 208 p. (in Russian) [В. И. Ниженко, Л. С. Флока. Поверхностное натяжение жидких металлов и сплавов. Москва, Металлургия (1981) 208 с.].

Similar papers

Funding

1. Russian Science Foundation - 20-19-00452