The structure of the titanium alloy, modified by electron beams and destroyed during fatigue

S.V. Konovalov, I.A. Komissarova, D. Kosinov, Y.F. Ivanov, O. Ivanova, V. Gromov
Received: 29 March 2017; Revised: 19 June 2017; Accepted: 03 July 2017
This paper is written in Russian
Citation: S.V. Konovalov, I.A. Komissarova, D. Kosinov, Y.F. Ivanov, O. Ivanova, V. Gromov. The structure of the titanium alloy, modified by electron beams and destroyed during fatigue. Letters on Materials, 2017, 7(3) 266-271
BibTex   DOI: 10.22226/2410‑3535‑2017‑3‑266‑271

Abstract

It was processed by electron beams of a surface of a titanium alloy and the increase of fatigue life is established. Scanning and transmission electron microscopy has been used to study the structure of a titanium alloy modified with electron beams and destroyed by fatigue.The present work is aimed to study the fracture surface and state of the defect substructure after high-cycle fatigue failure of titanium alloy VT1–0 preliminarily subjected to an intense pulsed electron beam irradiation with an electron energy 16 keV, pulse rate 0.3 s–1, pulse duration 150 mcs, beam energy flux density 30 J / cm–2 and the number of pulses 3. Electron beam irradiation led to an enhancement of the fatigue life by 40 % on average with respect to that of unirradiated samples. It has been established that the fatigue fracture has a multilayered character and is characterized by the presence of a surface layer of 20 to 25 μm thickness, an intermediate layer of 50 – 55 μm thickness and the bulk of the material. In the surface layer, a sublayer characterized by the presence of micropores adjacent to the irradiation surface can be distinguished. In order to compare with experimental results, the temperature field has been theoretically calculated. The analysis has shown that irradiation of titanium is accompanied by the formation of a relatively thin (about 25 μm) surface layer, which is formed as a result of rapid crystallization. It is shown that the defect substructure of the surface layer in samples failed by fatigue tests consists of a polycrystalline structure based on α-Ti; in the volume of grains, a dislocation substructure is observed, represented by randomly distributed dislocations or dislocations forming networks. It is established that the structure of samples irradiated by electron beam and failed by fatigue tests significantly differs from the structure revealed in unirradiated titanium samples by a subgrain structure in the volumes of grains in a surface layer with the thickness of 5 μm. On a larger distance from irradiated surface (about 20 to 25 μm), a plate-like substructure is observed in the grains. The state of plate-like structure essentially depends on a distance from the irradiated surface. Namely, a transition from a mixed subgrain and plate-like structure to the plate-like one occurs.

References (23)

1.
M. H. Mukhametrakhimov. Letters on materials, 5(2), 194 – 197, (2015) (in Russian) [М. Х. Мухаметрахимов. Письма о материалах. 5 (2), 194 – 197 (2015)]. DOI: 10.22226 / 2410‑3535‑2015‑2‑194‑197.
2.
K. N. Ramazanov, I. S. Ramazanov. Vestnik UGATU. 18(63), 41 – 46 (2014) (in Russian) [К. Н. Рамазанов, И. С. Рамазанов. Вестник УГАТО. 18 (2), 41 – 46 (2014)].
3.
V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova, M. V. Bannikov, S. G. Abaimov, I. Sh. Akhatov, T. Palin-Luc, O. B. Naimark. Phys. Mesomech. 20(1) 78 – 89 (2017). DOI: 10.1134 / S1029959917010076
4.
H. Mughrabi, H. Christ. ISIJ International. 37, 1154 – 1169 (1997).
5.
Y. Ochi, T. Sakai. Zairyo / Journal of the Society of Materials Science. 52, 433 – 439 (2003).
6.
L. Lu, W. Zhang. Jixie Qiangdu / Journal of Mechanical Strength. 27, 388 – 394 (2005).
7.
E. A. Erubaev, Ju. R. Kolobov, I. N. Kuz’menko, G. V. Hramov, M. B. Ivanov, S. S. Manohin. Fundamental’nye issledovanija. 12, 2575 – 2579 (2014) (in Russian) [Е. А. Ерубаев, Ю. Р. Колобов, И. Н. Кузьменко, Г. В. Храмов, М. Б. Иванов, С. С. Манохин. Фундаментальные исследования. 12, 2575 – 2579 (2014)].
8.
V. N. Uskov, G. A. Danilin, G. A. Vorob’eva, A. V. Titov, E. Ju. Remshev, Ju. S. Kukunja. Metalloobrabotka. 1(73), 50 – 54 (2013). (in Russian) [В. Н. Усков, Г. А. Данилин, Г. А. Воробьева, А. В. Титов, Е. Ю. Ремшев, Ю. С. Кукуня. Металлообработка. 1(73), 50 – 54 (2013)].
9.
V. L. Vorob’ev, P. V. Bykov, S. G. Bystrov, A. A. Kolotov, V. Ja. Bajankin, V. F. Kobziev, T. M. Mahneva. Himicheskaja fizika i mezoskopija. 15(4), 576 – 581 (2013). (in Russian) [В. Л. Воробьев, П. В. Быков, С. Г. Быстров, А. А. Колотов, В. Я. Баянкин, В. Ф. Кобзиев, Т. М. Махнева. Химическая физика и мезоскопия. 15(4), 576 – 581 (2013)].
10.
S. V. Konovalov, V. E. Kormyshev, Y. F. Ivanov, A. D. Teresov. Letters on materials. 6(4), 350 – 354 (2016). DOI: 10.22226 / 2410‑3535‑2016‑4‑350‑354.
11.
T. Yu. Kobzareva, V. E. Gromov, Yu. F. Ivanov, E. A. Budovskkh, S. V. Konovalov. IOP Conference Series: Materials Science and Engineering. 150(1), 012042 (2016). DOI: 10.1088 / 1757-899X / 150 / 1 / 012042
12.
O. V. Bashkov, Y. P. Sharkeev, S. V. Panin, V. A. Kim, T. I. Bashkova, A. A. Popkova, A. Y. Eroshenko, A. I. Tolmachev. AIP Conference Proceedings. 1783(10), 020013 (2016). DOI: 10.1063 / 1.4966306
13.
X. Chen, Y. Fang, P. Li, Z. Yu, X. Wu, D. Li. Materials and Design. 65, 1214 – 1221 (2015). DOI: 10.1016 / j.matdes.2014.10.013.
14.
I. Y. Timoshkin, K. V. Nikitin, V. I. Nikitin, V. B. Deev. Russian Journal of Non-Ferrous Metals. 57(5), 419 – 423 (2016). DOI: 10.3103 / S1067821216050163
15.
A. P. Laskovnev, Ju. F. Ivanov, E. A. Petrikova, N. N. Koval’, V. V. Uglov, N. N. Cherenda, N. V. Bibik, V. M. Astashinskij. Modifikacija struktury i svojstv jevtekticheskogo silumina jelektronno-ionno-plazmennoj obrabotkoj. — Minsk: «Belorusskaja nauka», 2013. — 287 s. (in Russian) [А. П. Ласковнев, Ю. Ф. Иванов, Е. А. Петрикова, Н. Н. Коваль, В. В. Углов, Н. Н. Черенда, Н. В. Бибик, В. М. Асташинский. Модификация структуры и свойств эвтектического силумина электронно-ионно-плазменной обработкой. — Минск: «Белорусская наука», 2013. — 287 с.]
16.
S. Konovalov, I. Komissarova, D. Kosinov, Yu. Ivanov, V. Gromov, O. Semina. Key Engineering Materials. 704, 15 – 19 (2016). DOI: 10.4028 / www.scientific.net / KEM.704.15
17.
Yu. F. Ivanov, N. N. Koval. Low-energy electron beams submillisekundnoy duration: reception and some aspects of the application in the field of materials science — Chapter 13 in the book “Structure and properties of advanced metallic materials.” p. 345 – 382 / Ed. A. I. Potekaev. Tomsk: Publishing house of the NTL. (2007) 580 p. (in Russian) [Иванов Ю. Ф., Коваль Н. Н. Низкоэнергетические электронные пучки субмиллисекундной длительности: получение и некоторые аспекты применения в области материаловедения — Гл.13 в книге «Структура и свойства перспективных металлических материалов». — С.345 – 382 / Под общ. ред. А. И. Потекаева. Томск. НТЛ. 2007. 580 с.]
18.
V. A. Grishunin, V. E. Gromov, Y. F. Ivanov, A. D. Teresov, S. V. Konovalov. Journal of Surface Investigation. 7(5), 990 – 995 (2013), DOI: 10.1134 / S1027451013050091
19.
N. N. Koval’, Yu. F. Ivanov. Russian Physics Journal. 51(5), 505 – 516 (2008), DOI: 10.1007 / s11182‑008‑9073‑7
20.
A. A. Samarskii A. A. Introduction to Numerical Methods. Moscow. Nauka (1997). 271 p. (in Russian) [А. А. Самарский. Введение в численные методы. М.: Наука, 1997. 271 с.]
21.
V. Rotshtein, Yu. Ivanov, A. Markov. Surface treatment of materials with low-energy, high-current electron beams. Chapter 6 in Book “Materials surface processing by directed energy techniques”. — P.205 – 240. Ed. by Y. Pauleau: Elsevier (2006) 763 р.
22.
A. A. Samarskij. Teorija raznostnyh shem. — M.: Nauka, 1989. — 616 s. (in Russian) [А. А. Самарский. Теория разностных схем. — М.: Наука, 1989. — 616 с.]
23.
Fizicheskie velichiny: Spravochnik / A. P. Babichev, N. A. Babushkina, A. M. Bratkovskij i dr. — M.; Jenergoatomizdat, 1991. — 1232 s. (in Russian) [Физические величины: Справочник / А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др. — М.; Энергоатомиздат, 1991. — 1232 с.]