Features of eddy-current testing of the fatigue degradation of laser clad cobalt-nickel-chromium coating under contact loading

R.A. Savrai ORCID logo , L.K. Kogan, A.V. Makarov, N.N. Soboleva ORCID logo show affiliations and emails
Received 20 March 2020; Accepted 28 May 2020;
This paper is written in Russian
Citation: R.A. Savrai, L.K. Kogan, A.V. Makarov, N.N. Soboleva. Features of eddy-current testing of the fatigue degradation of laser clad cobalt-nickel-chromium coating under contact loading. Lett. Mater., 2020, 10(3) 315-321
BibTex   https://doi.org/10.22226/2410-3535-2020-3-315-321

Abstract

Dependences of the eddy current device readings α at different frequencies on the number of loading cycles N, measured within contact spots after contact fatigue tests of the cobalt-nickel-chromium PG-10K-01 coatingThe fatigue spalling due to contact stresses is one of the main types of failure of the surface protective coatings. Therefore, an important task is to study the contact endurance and to develop nondestructive techniques for testing of the fatigue degradation of such coatings. The possibility of using the eddy-current technique to test the fatigue degradation under contact loading of the cobalt-nickel-chromium PG-10K-01 coating obtained through a gas-powder laser cladding has been investigated. It has been shown that the eddy-current testing of the fatigue degradation under contact loading of the PG-10K-01 coating is possible, but has certain limitations due to non-monotonic changes in the eddy-current device readings α depending on the number of loading cycles. While on the one hand, it is possible to test a sharp increase in the size of contact damages, which, under the used loading conditions, occurs after 5 ×104 and 5 ×105 cycles and results from the formation of a large number of peripheral ring cracks in the failure zone and the corresponding decrease in the value of α due to the increasing resistivity of the coating. On the other hand, it is possible to test the achievement of a certain number of loading cycles in the range of 8 ×105–1×106, when the eddy-current device readings exceed the initial values. This increase in the value of α is caused by the compaction of the coating as a result of healing of discontinuities and a decrease in its resistivity. The testing can be performed by measuring the eddy-current device readings at high excitation frequencies of the-eddy current probe f = 72 –120 kHz. In this case, the impact of the ferromagnetic steel base on the eddy-current device readings is minimal and mainly surface layers are analyzed, where the processes of crack formation, mechanical hardening, and compaction that affect the physical characteristics of the coating are developed more intensively.

References (33)

1. D.-G. Ahn. Int. J. Precis. Eng. Manuf. 14 (7), 1271 (2013). Crossref
2. C. L. Sexton, G. Byrne, K. G. Watkins. J. Laser Appl. 13 (1), 2 (2001). Crossref
3. J. R. Davis. ASM specialty handbook: heat-resistant materials. ASM International (1997) 591 p.
4. A. Amadeh, R. Ebadpour. J. Nanosci. Nanotechnol. 13 (2), 1360 (2013). Crossref
5. L. E. Afanasieva, G. V. Ratkevich. Letters on materials. 8 (3), 268 (2018). (in Russian) [Л. Е. Афанасьева, Г. В. Раткевич. Письма о материалах. 8 (3), 268 (2018).]. Crossref
6. L. E. Falqueto, D. J. Butkus, J. D. B. De Mello, A. C. Bozzi, C. Scandian. Wear. 376 - 377 (B), 1739 (2017). Crossref
7. G. P. Rajeev, M. Kamaraj, S. R. Bakshi. Surf. Coat. Technol. 326 (A), 63 (2017). Crossref
8. B. Ren, M. Zhang, C. Chen, X. Wang, T. Zou, Z. Hu. J. Mater. Eng. Perform. 26 (11), 5404 (2017). Crossref
9. E. A. Shur. Met. Sci. Heat Treat. 20 (8), 642 (1978). Crossref
10. L. I. Tushinskii, V. A. Bataev, V. M. Potapov, A. A. Bataev, A. P. Timofeev. Met. Sci. Heat Treat. 30 (5), 363 (1988). Crossref
11. A. Yonezu, B. Xu, X. Chen. Thin Solid Films. 518, 2082 (2010). Crossref
12. G. Ramírez, A. Mestra, B. Casas, I. Valls, R. Martínez, R. Bueno, A. Góez, A. Mateo, L. Llanes. Surf. Coat. Technol. 206, 3069 (2012). Crossref
13. G. Ramírez, E. Tarrés, B. Casas, I. Valls, R. Martínez, L. Llanes. Plasma Processes Polym. 6, S588 (2009). Crossref
14. E. Tarrés, G. Ramírez, Y. Gaillard, E. Jiménez-Piqué, L. Llanes. Int. J. Refract. Met. Hard Mater. 27, 323 (2009). Crossref
15. I. A. Bataev, A. A. Bataev, M. G. Golkovski, D. S. Krivizhenko, A. A. Losinskaya, O. G. Lenivtseva. Appl. Surf. Sci. 284, 472 (2013). Crossref
16. R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty). 4, 43 (2014). (in Russian) [Р. А. Саврай, А. В. Макаров, Н. Н. Соболева, И. Ю. Малыгина, А. Л. Осинцева. Обработка металлов (технология, оборудование, инструменты). 4, 43 (2014).].
17. R. A. Savrai, A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. Russ. J. Nondestr. Test. 51 (11), 692 (2015). Crossref
18. R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. J. Mater. Eng. Perform. 25 (3), 1068 (2016). Crossref
19. R. A. Savrai, A. V. Makarov, E. S. Gorkunov, N. N. Soboleva, L. Kh. Kogan, I. Yu. Malygina, A. L. Osintseva, N. A. Davydova. AIP Conf. Proc. 1915, 040049 (2017). Crossref
20. R. A. Savrai, A. V. Makarov, A. L. Osintseva, I. Yu. Malygina. J. Mater. Eng. Perform. 27 (2), 601 (2018). Crossref
21. R. A. Savrai, A. V. Makarov. Mat. Sci. Eng. A. 734, 513 (2018). Crossref
22. R. A. Savrai. Phys. Met. Metallogr. 119 (10), 1013 (2018). Crossref
23. R. A. Savrai, A. V. Makarov, E. S. Gorkunov, N. N. Soboleva, L. Kh. Kogan, I. Yu. Malygina, A. L. Osintseva. AIP Conf. Proc. 2053, 040088 (2018). Crossref
24. F. Shu, Z. Tian, H. Zhao, W. He, S. Sui, B. Liu. Mater. Lett. 176, 306 (2016). Crossref
25. A. V. Makarov, R. A. Savrai, A. L. Osintseva, I. Yu. Malygina. Izvestiya Chelyabinskogo nauchnogo tsentra. 2, 28 (2009). (in Russian) [А. В. Макаров, Р. А. Саврай, А. Л. Осинцева, И. Ю. Малыгина. Изв. ЧНЦ. 2, 28 (2009).].
26. R. Liu, S. Q. Xi, S. Kapoor, X. J. Wu. Int. J. Res. Rev. Appl. Sci. 5 (2), 110 (2010).
27. A. V. Makarov, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, R. A. Savrai, A. L. Osintseva. Russ. J. Nondestr. Test. 45 (11), 797 (2009). Crossref
28. R. A. Savrai, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. Opt. Laser Technol. 126, 106079 (2020). Crossref
29. A. V. Makarov, E. S. Gorkunov, L. Kh. Kogan. Russ. J. Nondestr. Test. 43 (1), 21 (2007). Crossref
30. A. S. Bakunov, V. F. Muzhitskii, S. E. Shubochkin. Russ. J. Nondestr. Test. 40 (5), 346 (2004). Crossref
31. Patent RF № 162959, 2016. (in Russian) [Патент РФ № 162959, 2016.].
32. V. V. Dyakin, V. A. Sandovskiy. Teoriya i raschet nakladnykh vikhretokovykh preobrazovateley. Moscow, Nauka (1981) 136 p. (in Russian) [В. В. Дякин, В. А. Сандовский. Теория и расчет накладных вихретоковых преобразователей. Москва, Наука (1981) 136 с.].
33. A. L. Dorofeev. Induktsionnaya strukturoskopiya. Moscow, Energiya (1973) 176 p. (in Russian) [А. Л. Дорофеев. Индукционная структуроскопия. Москва, Энергия (1973) 176 с.].

Similar papers

Funding

1. State order for IES UB RAS - АААА-А18-118020790147-4
2. State order for IMP UB RAS - АААА-А18-118020190116-6
3. State order for IMP UB RAS - АААА-А18-118020690196-3