Wear-resistant nickel-based laser clad coatings for high-temperature applications

A.V. Makarov, Y.S. Korobov, N.N. Soboleva ORCID logo , Y.V. Khudorozhkova ORCID logo , A.A. Vopneruk ORCID logo , P. Balu, M. Barbosa, I.Y. Malygina, S.V. Burov ORCID logo , A.K. Stepchenkov show affiliations and emails
Received: 24 October 2019; Revised: 30 October 2019; Accepted: 31 October 2019
Citation: A.V. Makarov, Y.S. Korobov, N.N. Soboleva, Y.V. Khudorozhkova, A.A. Vopneruk, P. Balu, M. Barbosa, I.Y. Malygina, S.V. Burov, A.K. Stepchenkov. Wear-resistant nickel-based laser clad coatings for high-temperature applications. Lett. Mater., 2019, 9(4) 470-474
BibTex   https://doi.org/10.22226/2410-3535-2019-4-470-474

Abstract

High-temperature annealing of the laser clad NiCrBSi coating forms framework structures of large chromium carbides borides with improved hardness and wear resistance in conditions of external and frictional heating up to 1000 °C.The effect of high-temperature processing on laser clad Ni-based coatings is studied. Annealing at 1025°C forms thermally stable framework structures with large chromium carbides and borides. As a result, improved hardness and wear resistance of the coating are maintained when heated to 1000°C. Stabilizing annealing also increases the frictional thermal resistance of the NiCrBSi coating. Under high-speed (3.1– 9.3 m / s) sliding friction, when the surface layer temperature reaches about 500 –1000°С and higher, the wear resistance of the coating increases by 1.7 – 3.0 times. The proposed approach to the formation of heat-resistant coatings is promising, in particular, for a hot deformation tool and other components of metallurgical equipment operating under high thermal and mechanical loads. Such products include crystallizer walls of continuous casting machines. For the walls, the development of laser cladding technology for wear-resistant composite coatings on copper alloys is relevant as an alternative to thermal spraying. The cladding of composite NiBSi-WC coatings of 0.6 and 1.6 mm thickness on a Cu-Cr-Zr bronze substrate heated to 200 – 250°C with a diode laser is considered. The presence of boron causes the formation of the W(C, B) carboboride phase, whose hardness is higher than that of WC in the initial powder. Depending on the thickness of coatings and, accordingly, on the duration of heating and the subsequent cooling, the process of secondary carboborides precipitation from the solid solution can be suppressed (in the “thin” coating) or activated (in the “thick” coating). This leads to a higher wear resistance under friction sliding 1.6 mm thickness coating.

References (25)

1. С. Navas, R. Colaco, J. De Damborenea, R. Vilar. Surf. Coat. Techn. 200, 6854 (2006). Crossref
2. A. Zikin, M. Antonov, I. Hussainova, L. Katona, A. Gavrilović. Tribol. Int. 68, 45 (2013). Crossref
3. O. I. Shevchenko, V. M. Farber, G. E. Trekin. Izvestia VUZov. Chernaya metallurgiya. 10, 76 (1994). (in Russian) [О. И. Шевченко, В. М. Фарбер, Г. Е. Трекин.Изв. вузов. Чер. металлургия. 10, 76 (1994).].
4. K. Günther, J. P. Bergmann. Materials Letters. 213, 253 (2018). Crossref
5. S. Kurlov, A. I. Gusev. Inorganic Materials. 42 (2), 121 (2006). Crossref
6. S. Zhou, Y. Huang, X. Zeng. Appl. Surf. Sci. 254, 3110 (2008). Crossref
7. C. Katsich, E. Badisch. Surf. Coat. Technol. 206, 1062 (2011). Crossref
8. A. V. Kushnarev, A. A. Kirichkov, A. A. Vopneruk, A. B. Kotel’nikov, Yu. S. Korobov, A. V. Makarov, S. V. Filatov, I. N. Shifrin. Svarka i diagnostika. 5, 50 (2017). (in Russian) [А. В. Кушнарев, А. А. Киричков, А. А. Вопнерук, А.Б.Котельников, Ю.С. Коробов, А.В. Макаров, С.В. Филатов, И.Н. Шифрин. Сварка и диагностика. 5, 50 (2017).].
9. A. B. Kotel’nikov, A. A. Vopneruk, A. V. Makarov, Yu. S. Korobov, A. A. Kirichkov, A. I. Dagman, I. N. Shifrin. Tyazheloe mashinostroenie. 9, 14 (2018). (in Russian) [А. Б. Котельников, А. А. Вопнерук, А. В. Макаров, Ю. С. Коробов, А. А. Киричков, А. И. Дагман, И. Н. Шифрин. Тяжелое машиностроение. 9, 14 (2018).].
10. I. V. Khomskaya, A. E. Kheifets, V. I. Zel’dovich, L. G. Korshunov, N. Yu. Frolova, D. N. Abdullina. Letters on Materials. 8 (4), 410 (2018). Crossref
11. A. V. Makarov, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, R. A. Savrai, A. L. Osintseva. Russ. J. Nondestr. Test. 45, 797 (2009). Crossref
12. R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. J. Mater. Eng. Perform. 25 (3), 1068 (2016). Crossref
13. A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. Met. Sci. Heat Treat. 57 (3-4), 161 (2015). Crossref
14. E. F. William. J. Mater. Eng. Perform. 23 (6), 1917 (2014). Crossref
15. G. Muvvala, D. P. Karmakar, A. K. Nath. Optics Laser Techn. 88, 139 (2017). Crossref
16. A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, A. L. Osintseva. RF Patent, BIMP. 26, 2492980 (2013).
17. T. Gómez-del Río, M. A. Garrido, J. E. Fernádez, M. Cadenas, J. Rodríguez. J. Mater. Proces. Technol. 204 (1-3), 304 (2008). Crossref
18. A. V. Makarov, N. N. Soboleva, I. Yu. Malygina, E. V. Kharanzhevskiy. J. Cryst. Growth. 525, 125200 (2019). Crossref
19. A. V. Makarov, N. N. Soboleva, I. Yu. Malygina. J. Frict. Wear. 38 (4), 272 (2017). Crossref
20. H. Skulev, S. Malinov, P. A. M. Basheer, W. Sha. Surf. Coat. Techn. 185 (1), 18 (2004). Crossref
21. Z. Bergant, J. Grum. J. Therm. Spray Technol. 18 (3), 380 (2009). Crossref
22. H. Yan, P. Zhang, Zh. Yu, Q. Lu, Sh. Yang, Ch. Li. Surf. Coat. Techn. 206, 4046 (2012). Crossref
23. E. V. Kharanzhevskiy. Phys. Met. Metallogr. 117 (9), 889 (2016). Crossref
24. R. A. Savrai. Phys. Met. Metallogr. 119 (10), 1013 (2018). Crossref
25. Refractory Carbides (Ed. by G. V. Samsonov). Springer, USA (1974) 461 p.

Similar papers

Funding

1. State order of M.N. Miheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences - «‎Laser»
2. State order of M.N. Miheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences - «‎Structure» № АААА-А18-118020190116-6
3. State order of Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences - № АААА-А18-118020790147-4
4. Russian Science Foundation - № 19-79-00031