Thermal stability of Ti-45Nb mechanically alloyed powder

Z.G. Kovalevskaya, Y.P. Sharkeev, M.A. Khimich, I.A. Glukhov
Received: 04 September 2018; Revised: 22 October 2018; Accepted: 22 October 2018
Citation: Z.G. Kovalevskaya, Y.P. Sharkeev, M.A. Khimich, I.A. Glukhov. Thermal stability of Ti-45Nb mechanically alloyed powder. Letters on Materials, 2018, 8(4) 443-447
BibTex   DOI: 10.22226/2410-3535-2018-4-443-447

Abstract

Mechanical alloying of titanium and niobium powders occurs under conditions of severe plastic deformation and leads to the formation of the alloy with nanosized structure. Upper limit of produced structure thermal stability is limited to 500°C.There were researches made of thermal stability of mechanically alloyed Ti-45Nb powder obtained via mechanical alloying of pure components using an AGO-2C high energy planetary ball mill. To evaluate the structural-phase transformations, methods of scanning electron microscopy, transmission electron microscopy and x-ray diffraction analysis were used. The mechanical alloying of titanium and niobium powders occurs under conditions of severe plastic deformation and leads to the homogenization of initial components. As a result the alloy with the structure consisting of different grains mixture is formed. This mixture of nanosized grains is represented by β-TiNb, metastable α-phase and α''-phase. Presence of metastable phases, large amount of interfaces, main phases lattice distortions indicate at presence of high internal energy stored in the material. With the differential scanning calorimetric analysis it was defined that structural-phase transformations occur under the powder heated up to temperatures of about 500°C and 700°C. . During annealing at 500°C the mechanically alloyed powder loses the metastable α''-phase while α-phase becomes in equilibrium. At the same time the process of recrystallization nucleus formation starts in the structure. The annealing at 700°C does not change alloy’s phase composition. The exothermal effect, which is characteristic of this temperature, is connected with the structural transformations in the alloy, in other words, with the recrystallization of plastically deformed material. Based on the results obtained it was concluded, that the thermal stability upper limit of the mechanically alloyed Ti-45Nb powder does not exceed 500°C.

References (19)

1.
C. N. Elias, M. A. Meyers, R. Z. Valiev, S. N. Monteiro. J. Mater. Res. Technol. 2(4), 340 (2013). DOI:10.1016/j.jmrt.2013.07.003
2.
S. Faghihi, A. P. Zhilyaev, J. A. Szpunar, F. Azari, H. Vali, M. Tabrizian. Adv. Mater. 19, 1069 (2007). DOI: 10.1002/adma.200602276
3.
L. Saldana, A. Mendez-Vilas, L. Jiang, M. Multigner, J. L. Gonzalez-Carrasco, M. T. Perez-Prado, M. L. Gonzalez-Martin, L. Munuera, N. Vilaboa. Biomater. 28(30), 4343 (2007). DOI: 10.1016/j.biomaterials.2007.06.015
4.
J. M. Cordeiro, T. Beline, A. L. R. Ribeiro, E. C. Rangel, N. C. da Cruz, R. Landers, L. P. Faverani, L. G. Vaz, L. M. G. Fais, F. B. Vicente, C. R. Grandini, M. T. Mathew, C. Sukotjo, V. A. R. Barão. Dent. Mater. 33, 1244 (2017). DOI: 10.1016/j.dental.2017.07.013
5.
Zh. G. Kovalevskaya, M. A. Khimich, A. V. Belyakov, I. A. Shulepov. Adv. Mater. Res. 1040, 39 (2014). DOI: 10.4028/www.scientific.net/AMR.1040.39
6.
C. Suryanarayana. Progress in Mater. Sci. 46, 1 (2001).
7.
T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada. Mater. Trans. 45(8), 2776 (2004).
8.
Yu. P. Sharkeev, A. Yu. Eroshenko, Zh. G. Kovalevskaya, A. A Saprykin, E. A. Ibragimov, I. A. Glukhov, M. A. Khimich, P. V. Uvarkin, E. V. Babakova. Russian Phys. J. 59(3), 430 (2016). DOI: 10.1007/s11182‑016‑0790‑z
9.
K. Zhuravleva, S. Scudino, M. S. Khoshkhoo, A. Gebert, M. Calin, L. Schultz, J. Eckert. Adv. Eng. Mater. 15(4), 262 (2013). DOI: 10.1002/adem.201200117
10.
Zh. G. Kovalevskaya, Y. P. Sharkeev, M. A. Khimich, M. A. Korchagin, V. A. Bataev. Nanosi. and Technol.: an Int. J. 8(3), 203 (2017). DOI: 10.1615/NanoSciTechnolIntJ.v8.i3.30
11.
Y. A. Giffoni, E. C. T. Ramos, H. R. Z. Sandim, M. T. T. Pacheco, G. Silva, A. S. Ramos. Mater. Sci. Forum 591 – 593, 141 (2008). DOI: 10.4028/www.scientific.net/MSF.591-593.141
12.
K. Zhuravleva, M. Bönisch, S. Scudino, M. Calin, L. Schults, J. Eckert, A. Gebert. Powder Technol. 253, 166 (2014). DOI: 10.1016/j.powtec.2013.11.002
13.
L. I. Mirkin. Handbook of X-ray diffraction analysis of polycrystals. Fizmathlit, Moscow (1966) 862 p. (in Russian) [Л. И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Физматлитб Москва (1966) 862 с.]
14.
T. F. Grigor’eva, A. P. Barinova, N. Z. Lyakhov. Mechanochemical synthesis in metal systems. Parallel, Novosibirsk (2008) 309 p. (in Russian) [Т. Ф. Григорьева, Ф. П. Баринова, Н. З. Ляхов. Механохимический синтез в металлических системах. Параллель, Новосибирск (2008) 309 с.]
15.
M. Bönisch, M. Calin, L. Giebeler, A. Helth, A. Gebert, W. Skrotzki, J. Eckert. J. Appl. Cryst. 47, 1374 (2014). DOI: 10.1107/S1600576714012576
16.
V. D. Cojocaru, D. Raducanu, T. Gloriant, I. Cinca. JOM. 64(5), 573 (2012). DOI: 10.1007/s11837‑012‑0312‑6
17.
B. Predel. Nb-Ti (Niobium-Titanium). Vol. 5H in Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys’. Heidelberg, Berlin, Springer, Landolt-Börnstein p. 1 – 3. DOI: 10.1007/10522884_2202
18.
M. Bönisch, A. Panigrahi, M. Calin, T. Waitz, M. Zehetbauer, W. Skrotzki, J. Eckert. J. of Alloys and Compounds 697, 300 (2017). DOI: 10.1016/j.jallcom.2016.12.108
19.
M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, J. Eckert. Sci. Technol. Adv. Mater. 14, 055004 (2013). DOI: 10.1088/1468-6996/14/5/055004