The effect of oxygen-free MgF2 matrix on the physical properties of (CoFeZr)х(MgF2)100−х nanocomposites

O.V. Stognei, T.V. Tregubova, I.M. Tregubov show affiliations and emails
Received 14 September 2022; Accepted 22 January 2023;
Citation: O.V. Stognei, T.V. Tregubova, I.M. Tregubov. The effect of oxygen-free MgF2 matrix on the physical properties of (CoFeZr)х(MgF2)100−х nanocomposites. Lett. Mater., 2023, 13(2) 109-114
BibTex   https://doi.org/10.22226/2410-3535-2023-2-109-114

Abstract

The magnetoresistive effect of the samples in initial state reached 3.25 % in magnetic field of 10 kOe. It was established that the composites structure, magnetoresistivity and magnetic properties are steady against thermal heating.Structure, electrical, magnetic and magnetoresistive properties of (CoFeZr)х(MgF2)100−х thin film composites have been investigated in a wide range of metal phase concentration (14 at.% ≤ х ≤ 52 at.%). The composites were studied in the initial state and after heat treatment at different temperatures up to 350°C. The magnetoresistance of the samples in initial state reached 3.25 % in a magnetic field of 10 kOe. It was established that the composites magnetoresistance and magnetic properties are steady against thermal heating up to 350°C. It is assumed that the stability of the composites properties against annealing is due to the presence of zirconium atoms dissolved in the dielectric matrix.

References (25)

1. S. Kanie, S. Koyama. Aip Adv. 8, 056313 (2018). Crossref
2. N. Kobayashi, S. Ohnuma. JMMM. 188, 30 (1998). Crossref
3. N. Kobayashi, S. Ohnuma. J. Appl. Phys. 90, 4159 (2001). Crossref
4. Y. Cao, A. Umetsu, N. Kobayashi. Appl. Phys. Lett. 111 (12), 122901 (2017). Crossref
5. S. Koyama, J. Totsuka. J. Appl. Phys. 113, 17C720 (2013). Crossref
6. N. Kobayashi, S. Ohnuma, H. Fujimori. J. Jpn. Inst. Met. 76, 375 (2012). (in Japanese). Crossref
7. S. Mitani, H. Fujimori. JMMM. 177, 919 (1998). Crossref
8. T. V. Tregubova, O. V. Stognei, V. V. Kirpan, A. V. Sitnikov. EPJ Web of Conf.: MISM. 185, 01014 (2018). Crossref
9. J. Fedotova et al. 9th IEEE Conf. on Nanotech. (IEEE-NANO), (2009) p. 651.
10. J.-O. Song, S.-R. Lee. JMMM. 310, 1923 (2007). Crossref
11. J. A. Fedotova, A. V. Pashkevich et al. JMMM. 511, 166963 (2020). Crossref
12. T. N. Kołtunowicz et al. JMMM. 421, 98 (2017). Crossref
13. V. A. Rabinoviich. Brief Chemical Reference. V. II. Leningrad, Khimiya (1978) 392 p. (in Russian) [В.А. Рабинович. Краткий химический справочник. Ленинград, Изд-во «Химия» (1978) 392 c.].
14. S. Sankar, A. E. Berkowitz, D. J. Smith. Phys. Rev. B. 62 (21), 14273 (2000). Crossref
15. Yu. E. Kalinin, A. V. Sitnikov, O. V. Stognei. Alt. Ener. and Ecol. 10, 9 (2007).
16. O. V. Stognei, V. A. Slyusarev. Microelectr. Eng. 69 (2-4), 476 (2003). Crossref
17. A. V. Shchekochihin et al. Kondensirovannye sredy i mezhfaznye granicy. 11 (1), 78 (2009). (in Russian) [А. В. Щекочихин. Конденсированные среды и межфазные границы. 11 (1), 78 (2009).].
18. J.-G. Ha, S. Mitani, K. Takanashi, M. Ohnuma. JMMM. 198, 21 (1999). Crossref
19. M. Ohnuma, K. Hono, H. Onodera et al. NanoStruct. Mater. 12, 573 (1999). Crossref
20. B. Dieny, S. Sankar, M. R. McCartney et al. JMMM. 185, 283 (1998). Crossref
21. A. Granovsky, Yu. Kalinin, O. Stognei et al. Physics Procedia. 82, 46 (2016). Crossref
22. A. M. Saad et al. Rev. Adv. Mater. Sci. 8, 152 (2004).
23. I. A. Svito et al. J. Alloys. Comp. 699, 818 (2017). Crossref
24. M. Julliere. Phys. Lett. 54A (3), 225 (1975). Crossref
25. J. S. Moodera, L. R. Kinder, et al. Phys. Rev. Lett. 74, 3273 (1995). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - FZGM-2023-0006, RF-2296.61321X0037 (equipment maintenance)