Thermal stability of microstructure in the AK4-1 and AK12D aluminum alloys after their joint friction stir processing

G.R. Khalikova ORCID logo , R.A. Basyrova, V.G. Trifonov show affiliations and emails
Received: 02 August 2023; Revised: 28 September 2023; Accepted: 12 October 2023
Citation: G.R. Khalikova, R.A. Basyrova, V.G. Trifonov. Thermal stability of microstructure in the AK4-1 and AK12D aluminum alloys after their joint friction stir processing. Lett. Mater., 2023, 13(4) 357-361
BibTex   https://doi.org/10.22226/2410-3535-2023-4-357-361

Abstract

The typical macrostructure of the AK4-1 aluminum alloy with local mixing of the AK12D alloy into it via friction stir processingThis work is aimed at evaluating the possibility of increasing the thermal stability of microstructure of AK4-1 (Al-Cu-Mg-Fe-Si-Ni) aluminum alloy with a matrix type structure. To achieve this goal, AK12D (Al-Si-Cu-Ni-Mg) aluminum alloy with a structure similar to the microduplex one was locally mixed into the investigated alloy via friction stir processing. The subsequent T6 heat treatment was carried out according to the standard regime for the AK4-1 alloy. Studies have shown that the stir zone had an elliptical shape with an onion-ring structure. This structure represented alternating rings with different amount and size of excess phase particles. At the same time, the ring width and average area of excess phase particles were larger in the center of the stir zone compared to the periphery where the ring width and average particle cross section area were smaller. The average particle cross section area in the rings with a higher content of excess phases was smaller than in the rings where their amount was lower. This distribution of excess phases leads to the formation of a fine-grained microstructure, the average size of which depends on the interparticle distance in the α-Al solid solution.

References (29)

1. A. P. Zykova, S. Yu. Tarasov, A. V. Chumaevskiy, E. A. Kolubaev. Metals. 10 (6), 772 (2020). Crossref
2. R. S. Mishra, Z. Y. Ma. Mater. Sci. Eng. R. 50, 1 (2002). Crossref
3. S. M. Aktarer, D. M. Sekban, O. Saray, T. Kucukomeroglu, Z. Y. Ma, G. Purcek. Mater. Sci. Eng. A. 636, 311 (2015). Crossref
4. S. S. Mirian Mehrian, M. Rahsepar, F. Khodabakhshi, A. P. Gerlich. Surf. Coat. Technol. 405, 126647 (2021). Crossref
5. Z. Y. Ma, S. R. Sharma, R. S. Mishra. Metall. Mater. Trans. A. 37, 3323 (2006). Crossref
6. J. R. Croteau, J. G. Jung, S. A. Whalen, J. Darsell, A. Mello, D. Holstine, K. Lay, M. Hansen, D. C. Dunand, N. Q. Vo. Scr. Mater. 186, 326 (2020). Crossref
7. Ch. He, Y. Li, J. Wei, Zh. Zhang, N. Tian, G. Qin, X. Zhao. J. Mater. Sci. Technol. 108, 26 (2022). Crossref
8. I. J. Polmear. Light alloys: from traditional alloys to nanocrystals. Light alloys. 4th ed. Oxford, Burlington.MA: Elsevier / Butterworth-Heinemann (2006) 421 p.
9. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D. P. Field, J. D. Robson, A. Deschamps, P. J. Withers. Prog. Mater. Sci. 117, 100752 (2021). Crossref
10. Z. Y. Ma, A. H. Feng, D. L. Chen, J. Shen. Crit. Rev. Solid State Mater. Sci. 43 (4), 269 (2018). Crossref
11. I. Zuiko, S. Mironov, S. Betsofen, R. Kaibyshev. Scr. Mater. 196, 113765 (2021). Crossref
12. I. Charit, R. S. Mishra. Scr. Mater. 58, 367 (2008). Crossref
13. A. Kalinenko, I. Vysotskiy, S. Malopheyev, S. Mironov, R. Kaibyshev. Mater. Lett. 302, 130407 (2021). Crossref
14. F. Khodabakhshi, A. Simchi, A. H. Kokabi, A. P. Gerlich, M. Nosko. Mater. Des. 63, 30 (2014). Crossref
15. G. R. Khalikova, G. R. Zakirova, A. I. Farkhutdinov, E. A. Korznikova, V. G. Trifonov. Lett. Mater. 12 (3), 255 (2022). Crossref
16. N. A. Belov. Phase composition of industrial and advanced aluminum alloys: monograph. Moscow, MISIS (2010) 511p.
17. F. Khodabakhshi, M. Nosko, A. P. Gerlich. Mater. Sci. Technol. (United Kingdom). 34, 1773 (2018). Crossref
18. J. Yang, D. Wang, B. L. Xiao, D. R. Ni, Z. Y. Ma. Metall. Mater. Trans. 44, 517 (2013). Crossref
19. D. G. Andrade, C. Leitão, N. Dialami, M. Chiumenti, D. M. Rodrigues. Int. J. Mech. Sci. 191, 106095 (2021). Crossref
20. M.-N. Avettand-Fénoël, R. Taillard, J. Laye, Th. Odiévre. Metall. Mater. Trans. A. 45, 563 (2014). Crossref
21. L. Zhang, Zh. Liu, X. Chen. Mater. Res. 25, e20220355 (2022). Crossref
22. A. H. Feng, B. L. Xiao, Z. Y. Ma. Compos. Sci. Tech. 68, 2141 (2008). Crossref
23. M. A. Sutton, B. Yang, A. P. Reynolds, R. Taylor. Mater. Sci. Eng. A. 323, 160 (2002). Crossref
24. B. C. Yang, J. H. Yan, M. A. Sutton, A. P. Reynolds. Mater. Sci. Eng. A. 364, 55 (2004). Crossref
25. H. Monajati, M. Zoghlami, A. Tongne, M. Jahazi. Metals. 10, 1244 (2020). Crossref
26. S. W. Xu, X. M. Deng. Acta Mater. 56, 1326 (2008). Crossref
27. X. Ma, Sh. Xu, F. Wang, Y. Zhao, X. Meng, Y. Xie, L. Wan, Y. Y. Huang. Mater. 15, 6579 (2022). Crossref
28. O. S. Salih, H. Ou, W. Sun. Int. J. Mech. Sci. 238, 107827 (2023). Crossref
29. H. Mehdi, R. S. Mishra. J. Mod. Def. Technol. 17. 715 (2021). Crossref

Similar papers

Funding

1. Russian Science Foundation - 22-29-01318