Influence of thermal treatment duration on structure and phase composition of additive Co-Cr-Mo alloy samples

M.A. Khimich ORCID logo , E.A. Ibragimov, A.I. Tolmachev, V.V. Chebodaeva, P.V. Uvarkin, N.A. Saprykina ORCID logo , A.A. Saprykin, Y.P. Sharkeev ORCID logo show affiliations and emails
Received 17 September 2021; Accepted 12 January 2022;
Citation: M.A. Khimich, E.A. Ibragimov, A.I. Tolmachev, V.V. Chebodaeva, P.V. Uvarkin, N.A. Saprykina, A.A. Saprykin, Y.P. Sharkeev. Influence of thermal treatment duration on structure and phase composition of additive Co-Cr-Mo alloy samples. Lett. Mater., 2022, 12(1) 43-48
BibTex   https://doi.org/10.22226/2410-3535-2022-1-43-48

Abstract

LPBF of multiple sieved powder of Co-28 wt.% Cr-6 wt.% Mo leads to the formation of samples with inclusions of Cr and Mo within the bulk.
Increasing the duration of annealing post-treatment leads to the initiation of diffusion processes, which, in its turn, leads to the gradual dissolution of Cr and Mo inclusiuonsLaser powder bed fusion (LPBF) requires application of powders with specific characteristics. These are near-spherical shape of particles, uniform elemental composition, typical particle size of 5 – 70 µm, etc. Such powders are produced by spheroidization methods. They have such disadvantages as high cost and sale only in large quantities. There are publications describing application in LPBF powders, produced by the methods, alternative to spheroidization. In the current study, powders of pure raw Co, Cr and Mo were used for the production of Co-Cr-Mo powder mixture. Samples of Co-28 wt.% Cr-6 wt.% Mo alloy were produced by LPBF from this powder mixture. Due to the difference between melting temperatures of Co, Cr and Mo, inclusions of Cr and Mo were formed within the bulk of samples. Studies of phase and elemental composition, structure and microhardness of the as-produced samples and after post-treatment with varied duration are represented. As-produced samples have non-uniform elemental composition and are represented by the main Co-based phase. Increasing the annealing duration leads to the sequential dissolution of un-melted Cr and Mo inclusions. Complete dissolution of Cr particles was observed at 10 hours of treatment and complete dissolution of Mo particles was not observed after 20 hours of annealing. Microhardness non-linearly changes with the increasing duration of annealing. This is due to the phase transformations and diffusion processes occurring at such type of post-treatment. Complete dissolution of Mo-particles could be achieved by further increasing the annealing time or by varying the mode of laser powder bed fusion.

References (40)

1. Z. Zhang, X. Yao, P. Ge. Int. J. Mech. Sci. 166, 105230 (2020). Crossref
2. G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino, M. Pavese, C. Badini. Met. Powder Rep. 71, 193 (2016). Crossref
3. L. Ardila, F. Garciandia, J. González-Díaz, P. Álvarez, A. Echeverria, M. Petite, R. Deffley, J. Ochoa. Phys. Procedia. 56, 99 (2014). Crossref
4. D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel. Adv. Powder Technol. 31 (1), 300 (2020). Crossref
5. D.-R. Eo, S.-H. Park, J.-W. Cho Mater. Des. 155, 212 (2018). Crossref
6. S. Özbilen, A. Ünal, T. Sheppard. Powder Metall. 34 (1), 53 (1991). Crossref
7. Q. Bao, Y. Yang, X. Wen, L. Guo, Z. Guo. Mater. & Design. 199, 109382 (2021). Crossref
8. G. Chen, S. Zhao, P. Tan, J. Wang, C. Xiang, H. Tang. Powder Technol. 333, 38 (2018). Crossref
9. Y. Nie, J. Tang, J. Teng, X. Ye, B. Yang, J. Huang, S. Yu, Y. Li. Adv. Powder Technol. 31 (7), 2912 (2020). Crossref
10. K. Zhuravleva, S. Scudino, M. S. Khoshkhoo, A. Gebert, M. Calin, L. Schultz, J. Eckert. Adv. Eng. Mater. 15 (4), 262 (2013). Crossref
11. C. Suryanarayana. Prog. Mater. Sci. 46, 1 (2001). Crossref
12. M. A. Surmeneva, A. Koptyug, D. Khrapov, Yu. F. Ivanov, T. Mishurova, S. Evsevleev, O. Prymak, K. Loza, M. Epple, G. Bruno, R. A. Surmenev. J. Mater. Process. Technol. 282, 116646 (2020). Crossref
13. M. A. Khimich, K. A. Prosolov, T. Mishurova, S. Evsevleev, X. Monforte, A. H. Teuschl, P. Slezak, E. A. Ibragimov, A. A. Saprykin, Z. G. Kovalevskaya, A. I. Dmitriev, G. Bruno, Y. P. Sharkeev. Nanomater. 11, 1159 (2021). Crossref
14. I. Polozov, V. Sufiiarov, A. Popovich, D. Masaylo, A. Grigoriev. J. Alloys and Compounds. 763, 436 (2018). Crossref
15. L. Bolzoni, T. Weissgaerber, B. Kieback, E. M. Ruiz-Navas, E. Gordo. J. Mechan. Behav. Biomed. Mater. 20, 149 (2013). Crossref
16. G. Wang, J. Yang, X. Jiao. Mater. Sci. Eng. A. 654, 69 (2016). Crossref
17. C. Z. Hargather, S.-L. Shang, Z.-K. Liu. Data in Brief. 20, 1537 (2018). Crossref
18. C. P. Heijwegen. Diffusion in the binary systems of molybdenum with nickel, iron and cobalt. Technische Hogeschool Eindhoven (1973). Crossref
19. M. Zhang, Y. Yang, C. Song, Y. Bai, Z. Xiao. J. Alloys and Compounds. 750, 878 (2018). Crossref
20. C. Song, M. Zhang, Y. Yanga, D. Wang, Y. Jia-kuo. Mater. Sci. Eng. A. 713, 206 (2018). Crossref
21. C. Song, H. Park, H. Seong, H. F. Lo´pez. Metall. Mater. Transac. A. 37A, 3197 (2006). Crossref
22. H. F. Lo´pez, A. J. Saldivar-Garcia. Metall. Mater. Transac. A. 39A, 8 (2008). Crossref
23. K. Ueki, Y. Kurihara, S. Mineta, Alfirano, K. Ueda, S. Namba, T. Yoneda, T. Narushima. Mater. Transac. 57 (12), 2048 (2016). Crossref
24. S. Kurosu, N. Nomura, A. Chiba. Mater. Transac. 47 (8), 1961 (2006). Crossref
25. A. Chiba, N. Nomura, Y. Ono. Acta Materialia. 55, 2119 (2007). Crossref
26. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi. Mater. Sci. Eng. A. 726, 21 (2018). Crossref
27. M. A. Khimich, E. A. Ibragimov, N. A. Saprykina, Yu. P. Sharkeev, A. A. Saprykin. AIP Conf. Proc. 2310, 020144 (2020). Crossref
28. F. Z. Hassani, M. Ketabchi, S. Bruschi, A. Ghiotti. J. Mater. Sci. 51, 4495 (2016). Crossref
29. M. A. Khimich, E. A. Ibragimov, V. V. Chebodaeva, A. A. Saprykin, Yu. P. Sharkeev. SSP. “Mater. Process. Technol.” (2021). In press.
30. M. Béreš, C. C. Silva, P. W. C. Sarvezuk, L. Wu, L. H. M. Antunes, A. L. Jardini, A. L. M. Feitosa, J. Žilková, H. F. G. de Abreu, R. M. Filho. Mater. Sci. Eng. A. 714, 36 (2018). Crossref
31. C. P. Emerson. The Microstructure and the Electrochemical Behavior of Cobalt Chromium Molybdenum Alloys from Retrieved Hip Implants, FIU Electronic Theses and Dissertations. 2230. (2015). Crossref
32. Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, Y. Koizumi, A. Chiba. Wear. 310, 51 (2014). Crossref
33. Y. Yamashita, Y. Li, E. Onodera, H. Matsumoto, A. Chiba. Mater. Transac. 51 (9), 1633 (2010). Crossref
34. J. B. Forsyth, L. M. d’ Alte da Veiga. Acta Crystallographica. 15 (6), 543 (1962). Crossref
35. S. Kurosu, H. Matsumoto, A. Chiba. Metall. Mater. Transac. A. 41A, 2613 (2010). Crossref
36. D. S. Bloom, J. W. Putman, N. J. Grant. J. Met. 4, 626 (1952). Crossref
37. E. N. Akhmedov. Physica B: Cond. Matter J. 571, 252 (2019). Crossref
38. W. Wang, F. Yin, M. Zhang, M. Zhao, Z. Li. JPEDAV. 35, 544 (2014). Crossref
39. S. Parshorov, R. Lazarova. J. Mater. Sci. Technol. 22 (3), 183 (2014).
40. Y. Zhang, X. Jiang, H. Sun, Z. Shao. Nanotechnol. Reviews. 9, 580 (2020). Crossref

Similar papers

Funding

1. Regional foundation for basic research and Tomsk Region - 19-48-700022