Influence of silicon impurity on the structure and physical properties of Sn-Si-O films

S.I. Rembeza, N.N. Kosheleva, E.S. Rembeza, T.V. Svistova ORCID logo , A.A. Vinokurov show affiliations and emails
Received 03 July 2020; Accepted 06 October 2020;
This paper is written in Russian
Citation: S.I. Rembeza, N.N. Kosheleva, E.S. Rembeza, T.V. Svistova, A.A. Vinokurov. Influence of silicon impurity on the structure and physical properties of Sn-Si-O films. Lett. Mater., 2020, 10(4) 469-474


Microstructure of Sn-Si-O film according to HRTEM. Silicon-doped tin dioxide films (Sn-Si-O) were produced by RF reactive ion-beam sputtering of a composite metal tin target in a controlled atmosphere of argon and oxygen.Silicon-doped tin dioxide (Sn-Si-O) films were prepared by HF reactive ion-beam sputtering of a composite tin metal target in a controlled atmosphere of Ar and O2. The use of a tin metal target with nonuniformly distributed quartz inserts made it possible to prepare a set of samples with a silicon impurity content of 0.5 to 4 at.% in one sputtering process. The elemental composition of the samples was determined, phase analysis was performed, and the dependence of the surface morphology of SnO2 on the content of silicon impurities was established. It has been shown that an increase in the Si concentration in the Sn-Si-O samples leads to a decrease in the grain size of polycrystals down to a value of about 5 nm, which is confirmed by the data of XRD and high-resolution transmission electron microscopy (HRTEM). The effect of a silicon impurity in SnO2 films on the optical properties of the films and the band gap, as well as on the concentration and mobility of charge carriers, has been studied. The films have a high transparency coefficient (over 70 %) in the visible region of the spectrum. The light transmission threshold lies in the region of 300 – 400 nm. When measuring the gas sensitivity of doped SnO2 films, the influence of the grain size on the gas sensor properties of the films was established and a size effect was found, which consists in a decrease in the temperature of the maximum gas sensitivity of the films with a decrease in the grain size and with an increase in the ratio of the number of atoms on the grain surface to their number in the bulk. Silicon doping of SnO2 films allows one to control the grain size of polycrystals and improve the metrological parameters of gas sensor elements based on SnO2.

References (13)

1. S. I. Rembeza, E. S. Rembeza, T. V. Svistova, N. N. Kosheleva. Metal oxide films: synthesis, properties, application. Voronezh, VSU Publishing House (2018) 172 p. (in Russian) [С. И. Рембеза, Е. С. Рембеза, Т. В. Свистова, Н. Н. Кошелева. Металлооксидные пленки: синтез, свойства, применение. Воронеж, Издательский дом ВГУ (2018) 172 с.].
2. V. I. Kondrashkin, N. O. Rybakova, S. V. Raksha, A. A. Shamin, K. O. Nikolaev. Molodoj uchenyj. 93, 128 (2015). (in Russian) [В. И. Кондрашкин, Н. О. Рыбакова, С. В. Ракша, А. А. Шамин, К. О. Николаев. Молодой ученый. 93, 128 (2015).].
3. V. V. Kiseleva, V. P. Bondina. Intermatic-2015: thesis. doc. Int. scientific and technical conf. 4, 158 (2015). (in Russian) [В. В. Киселева, В. П. Бондина. Intermatic-2015: тез. докл. междунар. науч.-техн. конф. 4, 158 (2015).].
4. J. F. Wager. Science. 300, 1245 (2003). Crossref
5. I. V. Babkina, O. V. Zhilova, Y. Y. Kalinin, V. A. Makagonov, O. I. Remizova, A. V. Sitnikov. Lett. Mater. 8 (2), 196 (2018). (in Russian) [И.В. Бабкина, О.В. Жилова, Ю.Е. Калинин, В.А. Макагонов, О.И. Ремизова, А.В. Ситников. Письма о материалах. 8 (2), 196 (2018).]. Crossref
6. V. I. Irkha. Scientific works of ONAS named after A. S. Popov. 2, 49 (2012). (in Russian) [В. И. Ирха. Научные труды ОНАС им. А. С. Попова. 2, 49 (2012).].
7. C. Xu, J. Tamaki, N. Miura, N. Yamazoe. Sensors and Actuators B: Chemical. 3 (2), 147 (1991). Crossref
8. S. I. Rembeza, R. E. Prosvetov, E. S. Rembeza, A. A. Vinokurov, V. A. Makagonov, B. L. Agapov. Lett. Mater. 9 (3), 288 (2019). (in Russian) [С. И. Рембеза, Р. Е. Просветов, Е. С. Рембеза, А. А. Винокуров, В. А. Макагонов, Б. Л. Агапов. Письма о материалах. 9 (3), 288 (2019).]. Crossref
9. J. Watson, K. Ihokura, G. S. V. Сoles. Measurement science and technology. 4 (7), 711 (1993). Crossref
10. V. M. Ievlev. Methods for the study of the atomic structure and substructure of materials. Voronezh, VSU (2008) 485 p. (in Russian) [В. М. Иевлев. Методы исследования атомной структуры и субструктуры материалов. Воронеж, ВГУ (2008) 485 с.].
11. G. V. Samsonov, A. L. Borisova. Physicochemical Properties of Oxides. Moscow, Metallurgy (1978) 472 p. (in Russian) [Г. Л. Самсонов, А. Л. Борисова. Физико-химические свойства окислов. Москва, Металлургия (1978) 472 с.].
12. S. I. Rembeza, E. S. Rembeza, B. M. Sinelnikov, N. I. Kargin. Physical methods for researching solid-state electronics materials. Stavropol, North-Caucasus State Technical University (2002) 432 p. (in Russian) [С. И. Рембеза, Е. С. Рембеза, Б. М. Синельников, Н. И. Каргин. Физические методы исследования материалов твердотельной электроники. Ставрополь: СевКавГТУ (2002) 432 с.].
13. S. A. Belousov, A. A. Nosov, T. G. Menshikova, S. I. Rembeza. The Bulletin of Voronezh State Technical University. 12 (2), 22 (2016). (in Russian) [С. А. Белоусов, А. А. Носов, Т. Г. Меньшикова, С. И. Рембеза. Вестник Воронежского государственного технического университета. 12 (2), 22 (2016).].

Similar papers