Structural-phase state of near-surface layers of VT6 titanium alloy after femtosecond laser treatment

M.V. Zhidkov, N.A. Smirnov, J. Chen ORCID logo , S.I. Kudryashov, M.N. Yapryntsev show affiliations and emails
Received 21 February 2020; Accepted 01 April 2020;
This paper is written in Russian
Citation: M.V. Zhidkov, N.A. Smirnov, J. Chen, S.I. Kudryashov, M.N. Yapryntsev. Structural-phase state of near-surface layers of VT6 titanium alloy after femtosecond laser treatment. Lett. Mater., 2020, 10(3) 243-248
BibTex   https://doi.org/10.22226/2410-3535-2020-3-243-248

Abstract

Laser induced periodic surface strictures (LIPSS) formed on titanium alloy VT6 (Ti6Al4V) surfaces after irradiation with fs-laser pulses (320 fs, 1030 nm)Samples from VT6 titanium alloy were surface treated with femtosecond laser pulses (τ = 320 fs, λ = 1030 nm). Samples were treated both in air and in water. Surface topography, elemental composition, and structural-phase state of the surface-modified layers were studied using scanning electron microscopy and X-ray diffraction analysis. It was found that treatment with a fluence of 1.2 J/cm2 leads to the formation of laser-induced periodic surface structures (LIPSS) on the surface of the VT6 titanium alloy. The period of the structures depends on the number of pulses and the processing medium: from ~1010 nm for 1 pulse in air to ~580 nm for 100 pulses in water. It was found that the surface structure after multi-pulse treatment exhibits superhydrophobic behavior with a contact angle of approximately 150 degrees. It was found that multi-pulse treatment both in air and in water leads to surface oxidation with the formation of TiO and an increase in the content of β-Ti in the near-surface layers.The magnitude of residual stresses of the first kind (macro residual stresses) in the surface layers of VT6 titanium alloy samples after femtosecond laser irradiation was estimated by the methods of X-ray diffraction analysis. The conventional sin2ψ method and the X-ray grazing incidence technique (GIXD-method) were used in this research. It was shown that, after processing with a fluence of 1.2 J/cm2, tensile residual stresses with a maximum magnitude of ~400 MPa are formed in the surface layers (~3 μm) of the samples.

References (23)

1. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Yu. R. Kolobov, A. E. Ligachev. Appl. Surf. Sci. 284, 634 (2013). Crossref
2. Y. F. Ivanov, N. N. Koval, S. V. Gorbunov, S. V. Vorobyov, S. V. Konovalov, V. E. Gromov. Russ. Phys. J. 54, 5 (2011). Crossref
3. Yu. F. Ivanov, V. Е. Gromov, S. V. Konovalov, D. V. Zagulyaev, Е. А. Petrikova, А. P. Semin. Prog. Phys. Met. 19, 2 (2018). Crossref
4. M. V. Zhidkov, A. E. Ligachev, Yu. R. Kolobov, G. V. Potemkin, G. E. Remnev. Russ. J. Non-ferrous Metals. 60, 590 (2019). Crossref
5. C. S. R. Nathala, A. Ajami, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, T. Ganz, A. Assion, W. Husinsky. Opt. Express. 23, 5915 (2015). Crossref
6. J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger. Appl. Phys. A. 110, 3 (2013). Crossref
7. C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, M. Zamfirescu. Appl. Surf. Sci. 278, 347 (2013). Crossref
8. A. Y. Vorobyev, C. Guo. J. Appl. Phys. 117, 033103 (2015). Crossref
9. Yu. R. Kolobov, M. Yu. Smolyakova, A. Yu. Kolobova, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, P. N. Saltuganov, D. A. Zayarny, A. E. Ligachev. Laser Phys. Lett. 11, 125602 (2014). Crossref
10. A. Y. Vorobyev, V. S. Makin, C. Guo. Phys. Rev. Lett. 102, 234301 (2009). Crossref
11. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, J. Krüger. Appl. Phys. A. 117, 103 (2014). Crossref
12. A. Jaggessar, H. Shahali, A. Mathew, P. K. D. V. Yarlagadda. J. Nanobiotechnol. 15, 64 (2017). Crossref
13. N. Epperlein, F. Menzel, K. Schwibbert, R. Koter, J. Bonse, J. Sameith, J. Kruger, J. Toepel. Appl Surf Sci. 418, 420 (2017). Crossref
14. A. A. Nastulyavichus, S. I. Kudryashov, I. N. Saraeva, N. A. Smirnov, A. A. Rudenko, E. R. Tolordava, A. A. Ionin. Laser Phys. Lett. 17, 016003 (2019). Crossref
15. E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, E. P. Ivanova. Langmuir. 27, 3012 (2011). Crossref
16. V. K. Truong, H. K. Webb, E. Fadeeva, B. N. Chichkov, A. H. F. Wu, R. Lamb, J. Y. Wang, R. J. Crawford, E. P. Ivanova. Biofouling. 28, 539 (2012). Crossref
17. A. Cunha, A.-M. Elie, L. Plawinski, A. P. Serro, A. M. Botelho Do Rego, A. Almeida, M. C. Urdaci, M.-C. Durrieu, R. Vilar. Appl Surf Sci. 360, 485 (2016). Crossref
18. S. Shaikh, S. Kedia, D. Singh, M. Subramanian, S. Sinha. J. Laser Appl. 31, 022011 (2019). Crossref
19. Y. R. Kolobov, E. V. Golosov, T. N. Vershinina, M. V. Zhidkov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev. Appl. Phys. A. 119, 241 (2015). Crossref
20. S. J. Skrzypek, A. Baczmanski, W. Ratuszek, E. Kusoir. J. App. Cryst. 34, 427 (2001). Crossref
21. L. B. Boinovich, A. M. Emelyanenko. Russ. Chem. Rev. 77, 7 (2008). Crossref
22. U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer. J. Appl. Cryst. 38, 1 (2005). Crossref
23. T. Gnäupel-Herold. J. Appl. Cryst. 45, 573 (2012). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-79-00257