Preparation and properties of electrospark coatings from Ti3Al granules with silicon carbide and boron carbide additives

S.A. Pyachin ORCID logo , T.B. Ershova, A.A. Burkov ORCID logo , N.M. Vlasova, E.A. Kirichenko, M.A. Kulik, V.O. Krutikova show affiliations and emails
Received 17 December 2018; Accepted 04 February 2019;
This paper is written in Russian
Citation: S.A. Pyachin, T.B. Ershova, A.A. Burkov, N.M. Vlasova, E.A. Kirichenko, M.A. Kulik, V.O. Krutikova. Preparation and properties of electrospark coatings from Ti3Al granules with silicon carbide and boron carbide additives. Lett. Mater., 2019, 9(2) 191-196
BibTex   https://doi.org/10.22226/2410-3535-2019-2-191-196

Abstract

Ti-Al, Ti-Al-Si-C and Ti-Al-B-C coatings were formed on titanium alloy Ti6Al4V by a new method of electrospark deposition from granules. The coating deposited from granules Ti3Al with 15 weight.% additive SiC increases the heat resistance of the titanium alloy by 2.3 times and the wear resistance of one by 38 times.The composite coatings Ti-Al, Ti-Al-Si-C and Ti-Al-B-C were formed on the Ti6Al4V titanium alloy by a new method of electro-spark deposition from granules. The granules were produced by sintering powders of titanium and aluminum mixed in a ratio of 3 :1, including 15 wt.% additives of silicon carbide and boron carbide. During coating, the frequency of the discharge pulses was 1 kHz, the on-pulse duration was 0.1 ms, and the deposition time was 12 min. The manufactured electro-spark coatings had a thickness of 20-40 µm. The composition of the surface layer formed by the deposition of pure intermetallic Ti3Al coincides with the composition of the initial material of the electrode. The Ti-Al-Si-C coatings are based on TiC, Ti5Si3 and Ti1+xAl1-x. The electrospark coatings formed from Ti-Al-B-C granules contain intermetallic compound Ti3Al, borides TiB and TiB2. Among the investigated samples, the Ti3Al +15%SiC coating has the highest microhardness, which is approximately 4 times higher than that of the titanium substrate from Ti6Al4V. The wear intensity of the titanium alloy during dry friction decreases by more than 19 times if it is coated with Ti3Al or Ti3Al +15%B4C coatings. The coating deposited from Ti3Al granules with 15 wt.% SiC additive has the highest wear resistance, its rate of deterioration is 38 times lower compared to Ti6Al4V. The friction coefficient of the obtained composite coatings is equal to 0.38 – 0.52. The oxidation rate of the titanium alloy during the isothermal heating at a temperature of 900°C can be reduced by 1.9 times if the alloy is coated with Ti3Al, and can be reduced by 2.3 times if the alloy is coated with Ti3Al with the additions of SiC or B4C.

References (22)

1. F. Movassagh-Alanagh, A. Abdollah-zadeh, M. Aliofkhazraei, M. Abedi. Wear. 390 - 391, 93 (2017). Crossref
2. M. Chen, W. Li, M. Shen, S. Zhu, F. Wang. Corrosion Science. 74, 178 (2013). Crossref
3. I. Gurrappa, A. K. Gogia. Surface and Coatings Technology. 139 (2), 216 (2001). Crossref
4. C. Leyens, M. Peters, W. A. Kaysser. Surface and Coatings Technology. 94 - 95, 34 (1997). Crossref
5. B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, J. Chen. Applied Surface Science. 253 (24), 9301 (2007). Crossref
6. M. Zhang, M. Shen, L. Xin, X. Ding, S. Zhu, F. Wang. Corrosion Science. 112, 36 (2016). Crossref
7. J. Dai, F. Zhang, A. Wang, H. Yu, C. Chen. Surface and Coatings Technology. 309, 805 (2017). Crossref
8. S. W. Kim, P. Wang, M. H. Oh, D. M. Wee, K. S. Kumar. Intermetallics. 12 (5), 499 (2004). Crossref
9. F. Oukati Sadeq, M. Sharifitabar, M. Shafiee Afarani. Surface and Coatings Technology. 337, 349 (2018). Crossref
10. B. R. Lazarenko, V. V. Mikhailov, A. E. Gitlevich, A. D. Verkhoturov, I. S. Anfimov. Elektronnaya Obrabotka Materialov. 3, 28 (1977).
11. V. V. Mikhailov, A. E. Gitlevich, A. D. Verkhoturov, A. I. Mikhailyuk, A. V. Belyakov, L. A. Konevtsov. Surface Engineering and Applied Electrochemistry. 49 (5), 373 (2013). Crossref
12. E. A. Levashov, E. I. Zamulaeva, A. E. Kudryashov, P. V. Vakaev, M. I. Petrzhik. Plasma Processes and Polymers. 4 (3), 293 (2007). Crossref
13. V. I. Ivanov, F. K. Burumkulov. Surface Engineering and Applied Electrochemistry. 46 (5), 416 (2010). Crossref
14. Z. Li, W. Gao, Y. He. Scripta Materialia. 45 (9), 1099 (2001). Crossref
15. Y. Iino, K. Yaesawa. International Journal of Modern Physics B. 17 (8 - 9), 1158 (2003). Crossref
16. S. A. Pyachin, T. B. Ershova, A. A. Burkov, N. M. Vlasova, V. C. Komarova. Russ. J. Non-Ferrous Metals. 57 (3), 266 (2016). Crossref
17. S. A. Pyachin, A. A. Burkov, V. S. Komarova. Journal of Surface Investigation. 7 (3), 515 (2013). Crossref
18. A. A. Burkov, S. A. Pyachin, T. B. Ershova, N. M. Vlasova, E. A. Kirichenko. Fundamental Problems of Modern Materials Science. 14 (2), 159 (2017). (in Russian) [А. А. Бурков, С. А. Пячин, Т. Б. Ершова, Н. М. Власова, Е. А. Кириченко. Фундаментальные Проблемы Современного Материаловедения, 14 (2), 159 (2017).].
19. A. A. Burkov, S. A. Pyachin, N. M. Vlasova. Blank production in mechanical engineering. 15 (10), 473 (2017). (in Russian) [А. А. Бурков, С. А. Пячин, Н. М. Власова. Заготовительные производства в машиностроении. 15 (10), 473 (2017).].
20. A. A. Burkov, S. A. Pyachin. Materials & Design. 80, 109 (2015). Crossref
21. Patent RF № 2650665, 18.05.2017. (in Russian) [Патент РФ № 2650665, 18.05.2017.].
22. A. A. Burkov, S. A. Pyachin, N. M. Vlasova, I. А. Astapov, M. А. Kulik. Obrabotka Metallov. 20 (3), 85 (2018). (in Russian) [А.А. Бурков, С.А. Пячин, Н.М. Власова, И.А. Астапов, М.А. Кулик. Обработка металлов. 20 (3), 85 (2018).]. Crossref

Similar papers

Funding

1. The Khabarovsk Krai government - grant № 1181 / 2018D from 28.06.2018