XRD study of the surface of aluminum alloy AK5M7 after electric-spark alloying

I.K. Hasan, N.A. Pan'kin, V.M. Kyashkin show affiliations and emails
Received: 08 October 2020; Revised: 08 November 2020; Accepted: 16 November 2020
Citation: I.K. Hasan, N.A. Pan'kin, V.M. Kyashkin. XRD study of the surface of aluminum alloy AK5M7 after electric-spark alloying. Lett. Mater., 2021, 11(1) 84-89
BibTex   https://doi.org/10.22226/2410-3535-2021-1-84-89


Dependence of residual stresses on the energy of electrospark processing and a method for their determination.The article presents the results of X-ray diffraction studies of the phase composition, substructure, and residual stresses in the surface layer of the AK5M7 alloy for different energy levels during electric-spark alloying (ESA) using a copper electrode. The micro-distortion values were estimated from the parameters of the crystal lattice of phase grains for which different reflection planes are parallel to the sample surface. Three phases, i. e., aluminum, silicon, and the intermetallic compound (Al2Cu), were found, and the fraction of the intermetallic compound increases with the ESA energy. It could be reasoned to intensify micro-metallurgical processes in the modified layer due to high thermomechanical effects. The residual stresses are tensile for Al and compressive for Al2Cu. The ESA energy at about 0.39 J yielded maximum stresses. Due to the large temperature gradient, variant thickness and specific volume / density were observed over the modified layer. An increase in the ESA energy resulted in the formation of the chaotic distribution of grains. The energy model qualitatively explains the emergence of one or another preferred orientation in electric-spark coatings based on the ratio between the surface and deformation energies. The results obtained are beneficial for improving surface modification of low-melting materials by electric-spark treatment and for optimizing the process.

References (18)

1. S. A. Velichko, P. V. Senin, P. V. Chumakov. Increasing the Service Life of Piston Hydraulic Cylinders Using Electrospark Alloying. Saransk. Publishing house of Mordovian University (2016) 108 p. (in Russian) [С. А. Величко, П. В. Сенин, П. В. Чумаков. Повышение долговечности поршневых гидроцилиндров с применением электроискровой технологии. Саранск, Изд-во Мордов. ун-та (2016) 108 с.].
2. I. K. Hasan, N. E. Fomin. Hardening Technologies and Coatings. 15 (3), 139 (2019). (in Russian) [И. К. Хасан, Н. Е. Фомин. Упрочняющие технологии и покрытия. 15 (3), 139 (2019).].
3. D. A. Ignat'kov. Elektronnaya obrabotka materialov. 37 (4), 9 (2001). (in Russian) [Д. А. Игнатьков. Электронная обработка материалов. 37 (4), 9 (2001).].
4. F. Kh. Burumkulov, V. P. Lyalakin, I. A. Pushkin, S. N. Frolov. Agricultural mechanization and electrification. 4, 23 (2001). (in Russian) [Ф. Х. Бурумкулов, В. П. Лялякин, И. А. Пушкин, С. Н. Фролов. Механизация и электрификация сельского хозяйства. 4, 23 (2001).].
5. S. I. Smagin, V. D. Vlasenko, Yu. I. Mulin. Computational technologies. 14 (3), 79 (2009). (in Russian) [С. И. Смагин, В. Д. Власенко, Ю. И. Мулин. Вычислительные технологии. 14 (3), 79 (2009).].
6. A. D. Verkhoturov, V. I. Ivanov, L. A. Konevtsov. Proceedings of GOSNITI. 107 (2), 131 (2011). (in Russian) [А. Д. Верхотуров, В. И. Иванов, Л. А. Коневцов. Труды ГОСНИТИ. 107 (2), 131 (2011).].
7. V. D. Vlasenko, M. V. Kolisova. Contemporary engineering sciences. 9 (6), 249 (2016). Crossref
8. E. V. Yurchenko, V. I. Ivanov. Proceedings of GOSNITI. 117 (3), 251 (2014). (in Russian) [Е. В. Юрченко, В. И. Иванов. Труды ГОСНИТИ. 117 (3), 251 (2014).].
9. S. Ya. Betsofen, L. M. Petrov, A. A. Ilyin, I. O. Bannyh, A. N. Lucenko. Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 1, 39 (2004). (in Russian) [С. Я. Бецофен, Л. М. Петров, А. А. Ильин, И. О. Банных, А. Н. Луценко. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 1, 39 (2004).].
10. S. Ya. Betsofen, A. A. Ashmarin, A. A. Lozovan, B. V. Ryabenko, A. N. Lutsenko, A. M. Mamonov, D. E. Molostov. Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 7, 33 (2016). (in Russian) [С. Я. Бецофен, А. А. Ашмарин, А. А. Лозован, Б. В. Рябенко, А. Н. Луценко, А. М. Мамонов, Д. Е. Молостов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 7, 33 (2016).]. Crossref
11. T. Gnaupel-Herold. J. Appl. Cryst. 45, 573 (2012). Crossref
12. S. Wang, C. Fan. Metals. 9, 1037 (2019). Crossref
13. H. Liu, I. Papadimitriou, F. X. Lin, J. L. Lorca. Acta Materialia. 167, 121 (2019). Crossref
14. Ya. S. Umansky. X-Ray of metals. Moscow, Metallurgiya (1967) 235 p. (in Russian) [Я. С. Уманский. Рентгенография металлов. Москва, Металлургия (1967) 235 с.].
15. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru. Thin Solid Films. 197, 17 (1991). Crossref
16. B. Rauschenbach, J. W. Gerlach. Cryst. Res. Technol. 35 (6-7), 675 (2000).<675::AID-CRAT675>3.0.CO;2-7. Crossref
17. J. P. Zhao, X. Wang, Z. Y. Chen. J. Phys. D: Appl. Phys. 30, 5 (1997). Crossref
18. V. K. Afanasyev, A. V. Gorshenin, M. A. Starostina, I. V. Degtyareva, E. V. Pervakova. Metallurgy of mechanical engineering. 3, 30 (2010). (in Russian) [В. К. Афанасьев, А. В. Горшенин, М. А. Старостина, И. В. Дегтярева, Е. В. Первакова. Металлургия машиностроения. 3, 30 (2010).].

Similar papers