Thermal analysis and microhardness of nanostructured alloy Invar 36

N.R. Yusupova, K.A. Krylova ORCID logo , R.R. Mulyukov show affiliations and emails
Received: 06 September 2021; Revised: 21 September 2021; Accepted: 21 September 2021
This paper is written in Russian
Citation: N.R. Yusupova, K.A. Krylova, R.R. Mulyukov. Thermal analysis and microhardness of nanostructured alloy Invar 36. Lett. Mater., 2021, 11(4) 382-385


Thermal analysis (red curve, DSC) and the microhardness (HV) of nanostructured Invar 36 alloy (blue curve) as the function of the annealing temperature.Alloys of the Fe-Ni system have found a wide application in modern technology and instrument making. One of the most famous Fe-Ni alloys is Invar alloy (with a Ni content of 36 wt.%), which has a low coefficient of thermal expansion. A significant drawback of this alloy is its low strength and hardness, which limits its use. In this work, a strong Invar alloy was obtained by severe plastic deformation by high pressure torsion using Bridgman anvils. The microstructure of the Invar 36 alloy after nanostructuring was represented by fragments with an average size of about 100 nm. Thermal analysis of nanostructured Invar showed that the curves recorded in the differential scanning calorimetry mode show endothermic and exothermic peaks. This peak indicates a phase transformation in the nanostructured alloy. The assessment of the strength properties is carried out by measuring the microhardness by the Vickers method. The value of the microhardness of the alloy Invar 36 in the nanostructured state is twice higher than in the coarse-grained state. However, on the curves of microhardness dependence on annealing temperature, a maximum is observed after annealing of nanostructured Invar in the temperature range from 380 to 450°C associated with the precipitation hardening due to the formation of a nanosized bcc phase that is not observed in the coarse-grained Invar alloy. An increase in the annealing temperature above 450°C leads to a decrease of microhardness as a result of two processes — recrystallization of the grains and dissolution of the bcc phase. Anomalous precipitation of the bcc phase in the nanostructured Invar alloy became possible due to an increase of diffusion capacity due to the formation of nonequilibrium, highly defected structure after deformational nanostructuring.

References (29)

1. W. D. Callister. Materials Science and Engineering: An Introduction 8th edition. NY, John Wiley & Sons (2010) 729 p.
2. A. Sahoo, V. R. R. Medicherla. Materials Today: Proceedings. 43 (2), 2242 (2021). Crossref
3. Physics and Engineering Applications of Magnetism. (Ed. by Y. Ishikawa, N. Miura). Springer, Berlin, Heidelberg (1991). Crossref
4. R. J. Weiss. Proc. Phys. Soc. 82 (2), 281 (1963). Crossref
5. T. Yokoyama, K. Eguchi. Phys. Rev. Lett. 107, 65901 (2011). Crossref
6. B. K. Jashti, W. J. Arbegast, S. M. Howard. J. Mater. Eng. Perform. 18 (7), 925 (2009). Crossref
7. M. Shiga. Curr. Opin. Solid State Mater. Sci. 1, 340 (1996). Crossref
8. C. Qiu, N. J. E. Adkins, M. M. Attallah. Acta Mater. 103, 382 (2016). Crossref
9. F. S. Harris. Cryogenics. 33 (8), 772 (1993). Crossref
10. M. S. Chun, M. H. Kim, W. S. Kim, S. H. Kim, J. M. Lee. Journal of Loss Prevention in the Process Industries. 22 (6), 901 (2009). Crossref
11. W. S. Park, M. S. Chun, M. S. Han, M. H. Kim, J. M. Lee. Materials Science and Engineering A. 528, 5790 (2011). Crossref
12. H. Asgari, M. Salarian, H. Ma, A. Olubamiji, M. Vlasea. Mater. Des. 160, 895 (2018). Crossref
13. T. Wegener, F. Brenne, A. Fischer, T. Möller, C. Hauck, S. Auernhammer, T. Niendorf. Additive Manufacturing. 37, 101603 (2021). Crossref
14. R. M. Wang, Y. G. Song, Y. F. Han. Journal of Alloys and Compounds. 331, 60 (2000). Crossref
15. A. A. Gulyaev, E. L. Svistunova. Scripta Metallurgica et Materialia. 33, 1497 (1995). Crossref
16. Ch. Wang, Sh. Yuan, Ch. Yao, Zh. Feng. Advanced Materials Research. 690 - 693, 290 (2013). Crossref
17. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials.Ch. 22. In: Handbook of Nanoscience, Engineering, and Technology. CRC Press, USA (2002) pp. 22-1-22-41 p.
18. A. A. Nazarov. Letters on materials. 8 (3), 372 (2018). Crossref
19. R. R. Mulyukov, A. I. Pshenichnyuk, Yu. A. Baimov. Letters on materials. 5 (4), 485 (2015). Crossref
20. K. A. Krylova, I. Kh. Bitkulov, R. R. Mulyukov. IOP Conf. Series: Materials Science and Engineering. 1008, 012022 (2020). Crossref
21. R. R. Mulyukov, I. Z. Sharipov, K. A. Bukreeva, I. Kh. Bitkulov. The Physics of Metals and Metallography. 109 (3), 234 (2010). Crossref
22. A. Vinogradov, S. Hashimot, V. I. Kopylov. Materials Science and Engineering: A. 355 (1-2), 277 (2003). Crossref
23. R. R. Mulyukov, I. Kh. Bitkulov, K. A. Bukreeva. Letters on materials. 1 (1), 70 (2011). (in Russian) [Р. Р. Мулюков, И. Х. Биткулов, К. А. Букреева. Письма о материалах. 1 (1), 70 (2011).]. Crossref
24. T. Nagayama, T. Yamamoto, T. Nakamura. Electrochimica Acta. 205, 178 (2016). Crossref
25. A. Vicenzo. J. Electrochem. Soc. 160, 570 (2013). Crossref
26. I. Tabakovic, V. Inturi, J. Thurn, M. Kief. Electrochim. Acta. 55, 6749 (2010). Crossref
27. K. A. Krylova, I. K. Bitkulov, R. R. Mulyukov. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012015 (2018). Crossref
28. S. Schumacher, R. Birringer, R. Strauss, H. Gleiter. Acta Metall. 37 (9), 2485 (1989). Crossref
29. R. Werschum, A. Kebler, S. Gruss et al. Annalles de Chimie. 21, 471 (1996).

Similar papers


1. The work is supported by the State Assignment of IMSP RAS. -